具有非 Lipschitz 条件的随机卡普托分数微分方程的平均原理

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Zhongkai Guo, Xiaoying Han, Junhao Hu
{"title":"具有非 Lipschitz 条件的随机卡普托分数微分方程的平均原理","authors":"Zhongkai Guo, Xiaoying Han, Junhao Hu","doi":"10.1007/s13540-024-00308-x","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the averaging principle for stochastic Caputo fractional differential equations with the nonlinear terms satisfying the non-Lipschitz condition is considered. The work in the article is roughly divided into three parts. Firstly, we establish a generalized Gronwall inequality with singular integral kernel which is a key part in our analysis. Secondly, we discuss the existence and uniqueness of solution. And finally, the averaging principle is considered.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Averaging principle for stochastic Caputo fractional differential equations with non-Lipschitz condition\",\"authors\":\"Zhongkai Guo, Xiaoying Han, Junhao Hu\",\"doi\":\"10.1007/s13540-024-00308-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, the averaging principle for stochastic Caputo fractional differential equations with the nonlinear terms satisfying the non-Lipschitz condition is considered. The work in the article is roughly divided into three parts. Firstly, we establish a generalized Gronwall inequality with singular integral kernel which is a key part in our analysis. Secondly, we discuss the existence and uniqueness of solution. And finally, the averaging principle is considered.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00308-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00308-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了非线性项满足非 Lipschitz 条件的随机 Caputo 分微分方程的平均原理。文章的工作大致分为三个部分。首先,我们建立了具有奇异积分核的广义 Gronwall 不等式,这是我们分析的关键部分。其次,我们讨论了解的存在性和唯一性。最后,考虑平均原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Averaging principle for stochastic Caputo fractional differential equations with non-Lipschitz condition

In this paper, the averaging principle for stochastic Caputo fractional differential equations with the nonlinear terms satisfying the non-Lipschitz condition is considered. The work in the article is roughly divided into three parts. Firstly, we establish a generalized Gronwall inequality with singular integral kernel which is a key part in our analysis. Secondly, we discuss the existence and uniqueness of solution. And finally, the averaging principle is considered.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信