{"title":"具有超线性增长非线性项的时空分数非局部反应扩散方程的 S-渐近 $$\\omega $$ - 周期解","authors":"Pengyu Chen, Kaibo Ding, Xuping Zhang","doi":"10.1007/s13540-024-00325-w","DOIUrl":null,"url":null,"abstract":"<p>This paper study a class of time-space fractional reaction-diffusion equations with nonlocal initial conditions and construct an abstract theory in fractional power spaces to discuss the results related <i>S</i>-asymptotically <span>\\(\\omega \\)</span>-periodic mild solutions. When the coefficients are sufficiently small, under the condition that the nonlinear term can grow any number of orders, we discuss the existence and uniqueness of <i>S</i>-asymptotically <span>\\(\\omega \\)</span>-periodic solutions based on the theory of operator semigroups and fixed point theorem. In addition, we considered the Mittag-Leffler-Ulam-Hyers stability results using the singular type Gronwall inequality and appropriate fractional calculus. The results in the present paper extended the work of (Andrade et al. in Proc Edinb Math Soc 59:65–76, 2016) to the case of time-space fractional nonlocal reaction-diffusion equations.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"S-asymptotically $$\\\\omega $$ -periodic solutions for time-space fractional nonlocal reaction-diffusion equation with superlinear growth nonlinear terms\",\"authors\":\"Pengyu Chen, Kaibo Ding, Xuping Zhang\",\"doi\":\"10.1007/s13540-024-00325-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper study a class of time-space fractional reaction-diffusion equations with nonlocal initial conditions and construct an abstract theory in fractional power spaces to discuss the results related <i>S</i>-asymptotically <span>\\\\(\\\\omega \\\\)</span>-periodic mild solutions. When the coefficients are sufficiently small, under the condition that the nonlinear term can grow any number of orders, we discuss the existence and uniqueness of <i>S</i>-asymptotically <span>\\\\(\\\\omega \\\\)</span>-periodic solutions based on the theory of operator semigroups and fixed point theorem. In addition, we considered the Mittag-Leffler-Ulam-Hyers stability results using the singular type Gronwall inequality and appropriate fractional calculus. The results in the present paper extended the work of (Andrade et al. in Proc Edinb Math Soc 59:65–76, 2016) to the case of time-space fractional nonlocal reaction-diffusion equations.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00325-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00325-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了一类具有非局部初始条件的时空分数反应扩散方程,并在分数幂空间中构建了一个抽象理论来讨论与 S-asymptotically \(\omega \)-periodic温和解相关的结果。当系数足够小时,在非线性项可以任意阶数增长的条件下,我们基于算子半群理论和定点定理讨论了S-渐近(\omega \)-周期解的存在性和唯一性。此外,我们还利用奇异型 Gronwall 不等式和适当的分数微积分考虑了 Mittag-Leffler-Ulam-Hyers 稳定性结果。本文的结果将(Andrade et al. in Proc Edinb Math Soc 59:65-76, 2016)的工作扩展到时空分数非局部反应扩散方程的情况。
S-asymptotically $$\omega $$ -periodic solutions for time-space fractional nonlocal reaction-diffusion equation with superlinear growth nonlinear terms
This paper study a class of time-space fractional reaction-diffusion equations with nonlocal initial conditions and construct an abstract theory in fractional power spaces to discuss the results related S-asymptotically \(\omega \)-periodic mild solutions. When the coefficients are sufficiently small, under the condition that the nonlinear term can grow any number of orders, we discuss the existence and uniqueness of S-asymptotically \(\omega \)-periodic solutions based on the theory of operator semigroups and fixed point theorem. In addition, we considered the Mittag-Leffler-Ulam-Hyers stability results using the singular type Gronwall inequality and appropriate fractional calculus. The results in the present paper extended the work of (Andrade et al. in Proc Edinb Math Soc 59:65–76, 2016) to the case of time-space fractional nonlocal reaction-diffusion equations.