Guy Revach;Timur Locher;Nir Shlezinger;Ruud J. G. van Sloun;Rik Vullings
{"title":"HKF:分层卡尔曼滤波与在线学习进化先验用于自适应心电图去噪","authors":"Guy Revach;Timur Locher;Nir Shlezinger;Ruud J. G. van Sloun;Rik Vullings","doi":"10.1109/TSP.2024.3443875","DOIUrl":null,"url":null,"abstract":"Electrocardiography (ECG) signals play a pivotal role in many healthcare applications, especially in at-home monitoring of vital signs. Wearable technologies, which these applications often depend upon, frequently produce low-quality ECG signals. While several methods exist for ECG denoising to enhance signal quality and aid clinical interpretation, they often underperform with ECG data from wearable technology due to limited noise tolerance or inadequate flexibility in capturing ECG dynamics. This paper introduces HKF, a hierarchical and adaptive Kalman filter, which uses a proprietary state space model to effectively capture both intra- and inter-heartbeat dynamics for ECG signal denoising. HKF learns a patient-specific structured prior for the ECG signal's intra-heartbeat dynamics in an online manner, resulting in a filter that adapts to the specific ECG signal characteristics of each patient. In an empirical study, HKF demonstrated superior denoising performance (reduced Mean-Squared Error) while preserving the unique properties of the waveform. In a comparative analysis, HKF outperformed previously proposed methods for ECG denoising, such as the model-based Kalman filter and data-driven autoencoders. This makes it a suitable candidate for applications in extramural healthcare settings.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"72 ","pages":"3990-4006"},"PeriodicalIF":4.6000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HKF: Hierarchical Kalman Filtering With Online Learned Evolution Priors for Adaptive ECG Denoising\",\"authors\":\"Guy Revach;Timur Locher;Nir Shlezinger;Ruud J. G. van Sloun;Rik Vullings\",\"doi\":\"10.1109/TSP.2024.3443875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrocardiography (ECG) signals play a pivotal role in many healthcare applications, especially in at-home monitoring of vital signs. Wearable technologies, which these applications often depend upon, frequently produce low-quality ECG signals. While several methods exist for ECG denoising to enhance signal quality and aid clinical interpretation, they often underperform with ECG data from wearable technology due to limited noise tolerance or inadequate flexibility in capturing ECG dynamics. This paper introduces HKF, a hierarchical and adaptive Kalman filter, which uses a proprietary state space model to effectively capture both intra- and inter-heartbeat dynamics for ECG signal denoising. HKF learns a patient-specific structured prior for the ECG signal's intra-heartbeat dynamics in an online manner, resulting in a filter that adapts to the specific ECG signal characteristics of each patient. In an empirical study, HKF demonstrated superior denoising performance (reduced Mean-Squared Error) while preserving the unique properties of the waveform. In a comparative analysis, HKF outperformed previously proposed methods for ECG denoising, such as the model-based Kalman filter and data-driven autoencoders. This makes it a suitable candidate for applications in extramural healthcare settings.\",\"PeriodicalId\":13330,\"journal\":{\"name\":\"IEEE Transactions on Signal Processing\",\"volume\":\"72 \",\"pages\":\"3990-4006\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10636238/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10636238/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
HKF: Hierarchical Kalman Filtering With Online Learned Evolution Priors for Adaptive ECG Denoising
Electrocardiography (ECG) signals play a pivotal role in many healthcare applications, especially in at-home monitoring of vital signs. Wearable technologies, which these applications often depend upon, frequently produce low-quality ECG signals. While several methods exist for ECG denoising to enhance signal quality and aid clinical interpretation, they often underperform with ECG data from wearable technology due to limited noise tolerance or inadequate flexibility in capturing ECG dynamics. This paper introduces HKF, a hierarchical and adaptive Kalman filter, which uses a proprietary state space model to effectively capture both intra- and inter-heartbeat dynamics for ECG signal denoising. HKF learns a patient-specific structured prior for the ECG signal's intra-heartbeat dynamics in an online manner, resulting in a filter that adapts to the specific ECG signal characteristics of each patient. In an empirical study, HKF demonstrated superior denoising performance (reduced Mean-Squared Error) while preserving the unique properties of the waveform. In a comparative analysis, HKF outperformed previously proposed methods for ECG denoising, such as the model-based Kalman filter and data-driven autoencoders. This makes it a suitable candidate for applications in extramural healthcare settings.
期刊介绍:
The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.