带有 N 型四级原子的位置相关光机械系统的光学响应

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL
A. Qayyum
{"title":"带有 N 型四级原子的位置相关光机械系统的光学响应","authors":"A. Qayyum","doi":"10.1002/qua.27469","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Cavity optomechanics explores the interaction between light and mechanical systems through radiation pressure. This interdisciplinary field merges principles from quantum mechanics and quantum optics provides powerful tools for generating and controlling quantum states. In this research, we theoretically investigated a four-level <i>N</i>-atomic system within the context of optomechanics. The oscillating mirror possesses a mass that varies with position and exhibits a singularity. We analyzed the dynamics using Heisenberg–Langevin equations and calculated steady-state solutions, studied optical response through both analytical and numerical methods. The main focus of this study was optical response within the domain of position-dependent effective mass. Our findings revealed that the output field representing transmission exhibits variations and shift with <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n </mrow>\n <annotation>$$ \\alpha $$</annotation>\n </semantics></math>, the nonlinear parameter of the position dependent effective mass. These variations not only impact transmission but also alter the dispersion and phase of the output field.</p>\n </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 16","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical Response of a Position-Dependent Optomechanical System With N-Type Four-Level Atoms\",\"authors\":\"A. Qayyum\",\"doi\":\"10.1002/qua.27469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Cavity optomechanics explores the interaction between light and mechanical systems through radiation pressure. This interdisciplinary field merges principles from quantum mechanics and quantum optics provides powerful tools for generating and controlling quantum states. In this research, we theoretically investigated a four-level <i>N</i>-atomic system within the context of optomechanics. The oscillating mirror possesses a mass that varies with position and exhibits a singularity. We analyzed the dynamics using Heisenberg–Langevin equations and calculated steady-state solutions, studied optical response through both analytical and numerical methods. The main focus of this study was optical response within the domain of position-dependent effective mass. Our findings revealed that the output field representing transmission exhibits variations and shift with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>α</mi>\\n </mrow>\\n <annotation>$$ \\\\alpha $$</annotation>\\n </semantics></math>, the nonlinear parameter of the position dependent effective mass. These variations not only impact transmission but also alter the dispersion and phase of the output field.</p>\\n </div>\",\"PeriodicalId\":182,\"journal\":{\"name\":\"International Journal of Quantum Chemistry\",\"volume\":\"124 16\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quantum Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/qua.27469\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.27469","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

腔体光学机械学探索光与机械系统之间通过辐射压力产生的相互作用。这一跨学科领域融合了量子力学和量子光学的原理,为生成和控制量子态提供了强大的工具。在这项研究中,我们从理论上研究了光机械学背景下的四级 N 原子系统。振荡镜具有随位置变化的质量,并表现出奇异性。我们使用海森堡-朗格文方程分析了动力学,计算了稳态解,并通过分析和数值方法研究了光学响应。这项研究的重点是位置相关有效质量域内的光学响应。我们的研究结果表明,代表透射的输出场会随着与位置有关的有效质量的非线性参数 α $$ \alpha $$ 的变化和移动而变化。这些变化不仅影响传输,还会改变输出场的色散和相位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optical Response of a Position-Dependent Optomechanical System With N-Type Four-Level Atoms

Cavity optomechanics explores the interaction between light and mechanical systems through radiation pressure. This interdisciplinary field merges principles from quantum mechanics and quantum optics provides powerful tools for generating and controlling quantum states. In this research, we theoretically investigated a four-level N-atomic system within the context of optomechanics. The oscillating mirror possesses a mass that varies with position and exhibits a singularity. We analyzed the dynamics using Heisenberg–Langevin equations and calculated steady-state solutions, studied optical response through both analytical and numerical methods. The main focus of this study was optical response within the domain of position-dependent effective mass. Our findings revealed that the output field representing transmission exhibits variations and shift with α $$ \alpha $$ , the nonlinear parameter of the position dependent effective mass. These variations not only impact transmission but also alter the dispersion and phase of the output field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Quantum Chemistry
International Journal of Quantum Chemistry 化学-数学跨学科应用
CiteScore
4.70
自引率
4.50%
发文量
185
审稿时长
2 months
期刊介绍: Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信