基于 LSTM 变换器模型的海面温度预测与分析

IF 2.1 4区 环境科学与生态学 Q3 ECOLOGY
Yu Fu , Jun Song , Junru Guo , Yanzhao Fu , Yu Cai
{"title":"基于 LSTM 变换器模型的海面温度预测与分析","authors":"Yu Fu ,&nbsp;Jun Song ,&nbsp;Junru Guo ,&nbsp;Yanzhao Fu ,&nbsp;Yu Cai","doi":"10.1016/j.rsma.2024.103726","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces a novel method for predicting sea surface temperature (SST) using a hybrid LSTM-Transformer model. The study utilizes the ERA5 dataset for SST prediction at six specific locations near China. The LSTM-Transformer model combines the temporal processing capability of LSTM with the efficient data processing power of Transformer, showing superior performance in reducing Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE), as well as improving the R-squared (R²) value, compared to standalone LSTM, Transformer, and traditional Logistic Regression (LR) models. This is particularly evident in spring and autumn, indicating its robustness to seasonal changes. The model's performance varies across different geographic locations, with lower prediction errors in low-latitude and open sea areas, attributed to the less complex environmental dynamics compared to continental shelf areas. Overall, the LSTM-Transformer hybrid model presents a significant advancement in SST prediction, providing important implications for fisheries, meteorology, and climate change research.</p></div>","PeriodicalId":21070,"journal":{"name":"Regional Studies in Marine Science","volume":"78 ","pages":"Article 103726"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction and analysis of sea surface temperature based on LSTM-transformer model\",\"authors\":\"Yu Fu ,&nbsp;Jun Song ,&nbsp;Junru Guo ,&nbsp;Yanzhao Fu ,&nbsp;Yu Cai\",\"doi\":\"10.1016/j.rsma.2024.103726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper introduces a novel method for predicting sea surface temperature (SST) using a hybrid LSTM-Transformer model. The study utilizes the ERA5 dataset for SST prediction at six specific locations near China. The LSTM-Transformer model combines the temporal processing capability of LSTM with the efficient data processing power of Transformer, showing superior performance in reducing Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE), as well as improving the R-squared (R²) value, compared to standalone LSTM, Transformer, and traditional Logistic Regression (LR) models. This is particularly evident in spring and autumn, indicating its robustness to seasonal changes. The model's performance varies across different geographic locations, with lower prediction errors in low-latitude and open sea areas, attributed to the less complex environmental dynamics compared to continental shelf areas. Overall, the LSTM-Transformer hybrid model presents a significant advancement in SST prediction, providing important implications for fisheries, meteorology, and climate change research.</p></div>\",\"PeriodicalId\":21070,\"journal\":{\"name\":\"Regional Studies in Marine Science\",\"volume\":\"78 \",\"pages\":\"Article 103726\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regional Studies in Marine Science\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352485524003591\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regional Studies in Marine Science","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352485524003591","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种利用 LSTM-Transformer 混合模型预测海面温度(SST)的新方法。研究利用ERA5数据集对中国附近六个特定地点的海面温度进行预测。LSTM-Transformer 模型结合了 LSTM 的时间处理能力和 Transformer 的高效数据处理能力,与独立的 LSTM、Transformer 和传统的逻辑回归 (LR) 模型相比,在降低平均绝对误差 (MAE) 和均方根误差 (RMSE) 以及提高 R 平方 (R²) 值方面表现出色。这一点在春季和秋季尤为明显,表明该模型对季节变化的适应性很强。该模型在不同地理位置的性能各不相同,在低纬度和开阔海域的预测误差较小,这是因为与大陆架地区相比,低纬度和开阔海域的环境动态不太复杂。总之,LSTM-Transformer 混合模型在 SST 预测方面取得了重大进展,对渔业、气象学和气候变化研究具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction and analysis of sea surface temperature based on LSTM-transformer model

This paper introduces a novel method for predicting sea surface temperature (SST) using a hybrid LSTM-Transformer model. The study utilizes the ERA5 dataset for SST prediction at six specific locations near China. The LSTM-Transformer model combines the temporal processing capability of LSTM with the efficient data processing power of Transformer, showing superior performance in reducing Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE), as well as improving the R-squared (R²) value, compared to standalone LSTM, Transformer, and traditional Logistic Regression (LR) models. This is particularly evident in spring and autumn, indicating its robustness to seasonal changes. The model's performance varies across different geographic locations, with lower prediction errors in low-latitude and open sea areas, attributed to the less complex environmental dynamics compared to continental shelf areas. Overall, the LSTM-Transformer hybrid model presents a significant advancement in SST prediction, providing important implications for fisheries, meteorology, and climate change research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Regional Studies in Marine Science
Regional Studies in Marine Science Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
3.90
自引率
4.80%
发文量
336
审稿时长
69 days
期刊介绍: REGIONAL STUDIES IN MARINE SCIENCE will publish scientifically sound papers on regional aspects of maritime and marine resources in estuaries, coastal zones, continental shelf, the seas and oceans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信