RNA 构象组合的结构和生物物理剖析

IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Steve L. Bonilla , Alisha N. Jones , Danny Incarnato
{"title":"RNA 构象组合的结构和生物物理剖析","authors":"Steve L. Bonilla ,&nbsp;Alisha N. Jones ,&nbsp;Danny Incarnato","doi":"10.1016/j.sbi.2024.102908","DOIUrl":null,"url":null,"abstract":"<div><p>RNA's ability to form and interconvert between multiple secondary and tertiary structures is critical to its functional versatility and the traditional view of RNA structures as static entities has shifted towards understanding them as dynamic conformational ensembles. In this review we discuss RNA structural ensembles and their dynamics, highlighting the concept of conformational energy landscapes as a unifying framework for understanding RNA processes such as folding, misfolding, conformational changes, and complex formation. Ongoing advancements in cryo-electron microscopy and chemical probing techniques are significantly enhancing our ability to investigate multiple structures adopted by conformationally dynamic RNAs, while traditional methods such as nuclear magnetic resonance spectroscopy continue to play a crucial role in providing high-resolution, quantitative spatial and temporal information. We discuss how these methods, when used synergistically, can provide a comprehensive understanding of RNA conformational ensembles, offering new insights into their regulatory functions.</p></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"88 ","pages":"Article 102908"},"PeriodicalIF":6.1000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0959440X24001350/pdfft?md5=bc1f80228c1ae22467485bb8f3608fdb&pid=1-s2.0-S0959440X24001350-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Structural and biophysical dissection of RNA conformational ensembles\",\"authors\":\"Steve L. Bonilla ,&nbsp;Alisha N. Jones ,&nbsp;Danny Incarnato\",\"doi\":\"10.1016/j.sbi.2024.102908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>RNA's ability to form and interconvert between multiple secondary and tertiary structures is critical to its functional versatility and the traditional view of RNA structures as static entities has shifted towards understanding them as dynamic conformational ensembles. In this review we discuss RNA structural ensembles and their dynamics, highlighting the concept of conformational energy landscapes as a unifying framework for understanding RNA processes such as folding, misfolding, conformational changes, and complex formation. Ongoing advancements in cryo-electron microscopy and chemical probing techniques are significantly enhancing our ability to investigate multiple structures adopted by conformationally dynamic RNAs, while traditional methods such as nuclear magnetic resonance spectroscopy continue to play a crucial role in providing high-resolution, quantitative spatial and temporal information. We discuss how these methods, when used synergistically, can provide a comprehensive understanding of RNA conformational ensembles, offering new insights into their regulatory functions.</p></div>\",\"PeriodicalId\":10887,\"journal\":{\"name\":\"Current opinion in structural biology\",\"volume\":\"88 \",\"pages\":\"Article 102908\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0959440X24001350/pdfft?md5=bc1f80228c1ae22467485bb8f3608fdb&pid=1-s2.0-S0959440X24001350-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in structural biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959440X24001350\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X24001350","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

RNA 在多种二级和三级结构之间形成和相互转换的能力对其功能的多样性至关重要,而将 RNA 结构视为静态实体的传统观点已转向将其理解为动态构象组合。在这篇综述中,我们将讨论 RNA 结构组合及其动力学,强调构象能谱的概念是理解折叠、错误折叠、构象变化和复合物形成等 RNA 过程的统一框架。低温电子显微镜和化学探测技术的不断进步大大提高了我们研究构象动态 RNA 所采用的多种结构的能力,而核磁共振光谱等传统方法在提供高分辨率、定量的空间和时间信息方面继续发挥着至关重要的作用。我们将讨论这些方法如何协同使用,从而全面了解 RNA 的构象组合,为了解其调控功能提供新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural and biophysical dissection of RNA conformational ensembles

RNA's ability to form and interconvert between multiple secondary and tertiary structures is critical to its functional versatility and the traditional view of RNA structures as static entities has shifted towards understanding them as dynamic conformational ensembles. In this review we discuss RNA structural ensembles and their dynamics, highlighting the concept of conformational energy landscapes as a unifying framework for understanding RNA processes such as folding, misfolding, conformational changes, and complex formation. Ongoing advancements in cryo-electron microscopy and chemical probing techniques are significantly enhancing our ability to investigate multiple structures adopted by conformationally dynamic RNAs, while traditional methods such as nuclear magnetic resonance spectroscopy continue to play a crucial role in providing high-resolution, quantitative spatial and temporal information. We discuss how these methods, when used synergistically, can provide a comprehensive understanding of RNA conformational ensembles, offering new insights into their regulatory functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current opinion in structural biology
Current opinion in structural biology 生物-生化与分子生物学
CiteScore
12.20
自引率
2.90%
发文量
179
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed. In COSB, we help the reader by providing in a systematic manner: 1. The views of experts on current advances in their field in a clear and readable form. 2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications. [...] The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance. -Folding and Binding- Nucleic acids and their protein complexes- Macromolecular Machines- Theory and Simulation- Sequences and Topology- New constructs and expression of proteins- Membranes- Engineering and Design- Carbohydrate-protein interactions and glycosylation- Biophysical and molecular biological methods- Multi-protein assemblies in signalling- Catalysis and Regulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信