原始扰动的一般预测及其影响

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Mohit K. Sharma , M. Sami , David F. Mota
{"title":"原始扰动的一般预测及其影响","authors":"Mohit K. Sharma ,&nbsp;M. Sami ,&nbsp;David F. Mota","doi":"10.1016/j.physletb.2024.138956","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a novel framework for studying small-scale primordial perturbations and their cosmological implications. The framework uses a deep reinforcement learning to generate scalar power spectrum profiles that are consistent with current observational constraints. The framework is shown to predict the abundance of primordial black holes and the production of secondary induced gravitational waves. We demonstrate that the set up under consideration is capable of generating predictions that are beyond the traditional model-based approaches.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0370269324005148/pdfft?md5=24b5bc011ab173db5c254a6288a68d04&pid=1-s2.0-S0370269324005148-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Generic predictions for primordial perturbations and their implications\",\"authors\":\"Mohit K. Sharma ,&nbsp;M. Sami ,&nbsp;David F. Mota\",\"doi\":\"10.1016/j.physletb.2024.138956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce a novel framework for studying small-scale primordial perturbations and their cosmological implications. The framework uses a deep reinforcement learning to generate scalar power spectrum profiles that are consistent with current observational constraints. The framework is shown to predict the abundance of primordial black holes and the production of secondary induced gravitational waves. We demonstrate that the set up under consideration is capable of generating predictions that are beyond the traditional model-based approaches.</p></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0370269324005148/pdfft?md5=24b5bc011ab173db5c254a6288a68d04&pid=1-s2.0-S0370269324005148-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0370269324005148\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370269324005148","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一个研究小尺度原始扰动及其宇宙学影响的新框架。该框架利用深度强化学习来生成与当前观测约束相一致的标量功率谱剖面。研究表明,该框架可以预测原始黑洞的丰度和二次诱导引力波的产生。我们证明了所考虑的设置能够产生超越传统基于模型方法的预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generic predictions for primordial perturbations and their implications

We introduce a novel framework for studying small-scale primordial perturbations and their cosmological implications. The framework uses a deep reinforcement learning to generate scalar power spectrum profiles that are consistent with current observational constraints. The framework is shown to predict the abundance of primordial black holes and the production of secondary induced gravitational waves. We demonstrate that the set up under consideration is capable of generating predictions that are beyond the traditional model-based approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信