Weiwei Zhou, Minghai Su, Tiantongfei Jiang, Yunjin Xie, Jingyi Shi, Yingying Ma, Kang Xu, Gang Xu, Yongsheng Li, Juan Xu
{"title":"癌症干细胞在线:研究癌症干性及其与免疫反应关系的资源。","authors":"Weiwei Zhou, Minghai Su, Tiantongfei Jiang, Yunjin Xie, Jingyi Shi, Yingying Ma, Kang Xu, Gang Xu, Yongsheng Li, Juan Xu","doi":"10.1093/gpbjnl/qzae058","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer progression involves the gradual loss of a differentiated phenotype and the acquisition of progenitor and stem cell-like features, which are potential culprits of immunotherapy resistance. Although the state-of-the-art predictive computational methods have facilitated the prediction of cancer stemness, there remains a lack of efficient resources to accommodate various usage requirements. Here, we present the Cancer Stemness Online, an integrated resource for efficiently scoring cancer stemness potential at both bulk and single-cell levels. This resource integrates eight robust predictive algorithms as well as 27 signature gene sets associated with cancer stemness for predicting stemness scores. Downstream analyses were performed from five distinct aspects: identifying the signature genes of cancer stemness; exploring the associations with cancer hallmarks and cellular states; exploring the associations with immune response and the communications with immune cells; investigating the contributions to patient survival; and performing a robustness analysis of cancer stemness among different methods. Moreover, the pre-calculated cancer stemness atlas for more than 40 cancer types can be accessed by users. Both the tables and diverse visualizations of the analytical results are available for download. Together, Cancer Stemness Online is a powerful resource for scoring cancer stemness and expanding downstream functional interpretation, including immune response and cancer hallmarks. Cancer Stemness Online is freely accessible at http://bio-bigdata.hrbmu.edu.cn/CancerStemnessOnline.</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522875/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cancer Stemness Online: A Resource for Investigating Cancer Stemness and Associations with Immune Response.\",\"authors\":\"Weiwei Zhou, Minghai Su, Tiantongfei Jiang, Yunjin Xie, Jingyi Shi, Yingying Ma, Kang Xu, Gang Xu, Yongsheng Li, Juan Xu\",\"doi\":\"10.1093/gpbjnl/qzae058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer progression involves the gradual loss of a differentiated phenotype and the acquisition of progenitor and stem cell-like features, which are potential culprits of immunotherapy resistance. Although the state-of-the-art predictive computational methods have facilitated the prediction of cancer stemness, there remains a lack of efficient resources to accommodate various usage requirements. Here, we present the Cancer Stemness Online, an integrated resource for efficiently scoring cancer stemness potential at both bulk and single-cell levels. This resource integrates eight robust predictive algorithms as well as 27 signature gene sets associated with cancer stemness for predicting stemness scores. Downstream analyses were performed from five distinct aspects: identifying the signature genes of cancer stemness; exploring the associations with cancer hallmarks and cellular states; exploring the associations with immune response and the communications with immune cells; investigating the contributions to patient survival; and performing a robustness analysis of cancer stemness among different methods. Moreover, the pre-calculated cancer stemness atlas for more than 40 cancer types can be accessed by users. Both the tables and diverse visualizations of the analytical results are available for download. Together, Cancer Stemness Online is a powerful resource for scoring cancer stemness and expanding downstream functional interpretation, including immune response and cancer hallmarks. Cancer Stemness Online is freely accessible at http://bio-bigdata.hrbmu.edu.cn/CancerStemnessOnline.</p>\",\"PeriodicalId\":94020,\"journal\":{\"name\":\"Genomics, proteomics & bioinformatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522875/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics, proteomics & bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/gpbjnl/qzae058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, proteomics & bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gpbjnl/qzae058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cancer Stemness Online: A Resource for Investigating Cancer Stemness and Associations with Immune Response.
Cancer progression involves the gradual loss of a differentiated phenotype and the acquisition of progenitor and stem cell-like features, which are potential culprits of immunotherapy resistance. Although the state-of-the-art predictive computational methods have facilitated the prediction of cancer stemness, there remains a lack of efficient resources to accommodate various usage requirements. Here, we present the Cancer Stemness Online, an integrated resource for efficiently scoring cancer stemness potential at both bulk and single-cell levels. This resource integrates eight robust predictive algorithms as well as 27 signature gene sets associated with cancer stemness for predicting stemness scores. Downstream analyses were performed from five distinct aspects: identifying the signature genes of cancer stemness; exploring the associations with cancer hallmarks and cellular states; exploring the associations with immune response and the communications with immune cells; investigating the contributions to patient survival; and performing a robustness analysis of cancer stemness among different methods. Moreover, the pre-calculated cancer stemness atlas for more than 40 cancer types can be accessed by users. Both the tables and diverse visualizations of the analytical results are available for download. Together, Cancer Stemness Online is a powerful resource for scoring cancer stemness and expanding downstream functional interpretation, including immune response and cancer hallmarks. Cancer Stemness Online is freely accessible at http://bio-bigdata.hrbmu.edu.cn/CancerStemnessOnline.