卵巢颗粒细胞中的上皮Na+通道(ENaC)调节Ca2+动员和促性腺激素信号传导,从而促进雌激素平衡和女性生育。

IF 8.2 2区 生物学 Q1 CELL BIOLOGY
Xiyang Ma, Ruiyao Xu, Junjiang Chen, Shan Wang, Peijie Hu, Yong Wu, Yanting Que, Wanting Du, Xiaojun Cai, Hui Chen, Jinghui Guo, Tin Chiu Li, Ye Chun Ruan
{"title":"卵巢颗粒细胞中的上皮Na+通道(ENaC)调节Ca2+动员和促性腺激素信号传导,从而促进雌激素平衡和女性生育。","authors":"Xiyang Ma, Ruiyao Xu, Junjiang Chen, Shan Wang, Peijie Hu, Yong Wu, Yanting Que, Wanting Du, Xiaojun Cai, Hui Chen, Jinghui Guo, Tin Chiu Li, Ye Chun Ruan","doi":"10.1186/s12964-024-01778-5","DOIUrl":null,"url":null,"abstract":"<p><p>Ovarian granulosa cells are essential to gonadotrophin-regulated estrogen production, female cycle maintenance and fertility. The epithelial Na<sup>+</sup> channel (ENaC) is associated with female fertility; however, whether and how it plays a role in ovarian cell function(s) remained unexplored. Here, we report patch-clamp and Na<sup>+</sup> imaging detection of ENaC expression and channel activity in both human and mouse ovarian granulosa cells, which are promoted by pituitary gonadotrophins, follicle stimulating hormone (FSH) or luteinizing hormone (LH). Cre-recombinase- and CRISPR-Cas9-based granulosa-specific knockout of ENaC α subunit (Scnn1a) in mice resulted in failed estrogen elevation at early estrus, reduced number of corpus luteum, abnormally extended estrus phase, reduced litter size and subfertility in adult female mice. Further analysis using technologies including RNA sequencing and Ca<sup>2+</sup> imaging revealed that pharmacological inhibition, shRNA-based knockdown or the knockout of ENaC diminished spontaneous or stimulated Ca<sup>2+</sup> oscillations, lowered the capacity of intracellular Ca<sup>2+</sup> stores and impaired FSH/LH-stimulated transcriptome changes for estrogen production in mouse and/or human granulosa cells. Together, these results have revealed a previously undefined role of ENaC in modulating gonadotrophin signaling in granulosa cells for estrogen homeostasis and thus female fertility.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11323461/pdf/","citationCount":"0","resultStr":"{\"title\":\"The epithelial Na<sup>+</sup> channel (ENaC) in ovarian granulosa cells modulates Ca<sup>2+</sup> mobilization and gonadotrophin signaling for estrogen homeostasis and female fertility.\",\"authors\":\"Xiyang Ma, Ruiyao Xu, Junjiang Chen, Shan Wang, Peijie Hu, Yong Wu, Yanting Que, Wanting Du, Xiaojun Cai, Hui Chen, Jinghui Guo, Tin Chiu Li, Ye Chun Ruan\",\"doi\":\"10.1186/s12964-024-01778-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ovarian granulosa cells are essential to gonadotrophin-regulated estrogen production, female cycle maintenance and fertility. The epithelial Na<sup>+</sup> channel (ENaC) is associated with female fertility; however, whether and how it plays a role in ovarian cell function(s) remained unexplored. Here, we report patch-clamp and Na<sup>+</sup> imaging detection of ENaC expression and channel activity in both human and mouse ovarian granulosa cells, which are promoted by pituitary gonadotrophins, follicle stimulating hormone (FSH) or luteinizing hormone (LH). Cre-recombinase- and CRISPR-Cas9-based granulosa-specific knockout of ENaC α subunit (Scnn1a) in mice resulted in failed estrogen elevation at early estrus, reduced number of corpus luteum, abnormally extended estrus phase, reduced litter size and subfertility in adult female mice. Further analysis using technologies including RNA sequencing and Ca<sup>2+</sup> imaging revealed that pharmacological inhibition, shRNA-based knockdown or the knockout of ENaC diminished spontaneous or stimulated Ca<sup>2+</sup> oscillations, lowered the capacity of intracellular Ca<sup>2+</sup> stores and impaired FSH/LH-stimulated transcriptome changes for estrogen production in mouse and/or human granulosa cells. Together, these results have revealed a previously undefined role of ENaC in modulating gonadotrophin signaling in granulosa cells for estrogen homeostasis and thus female fertility.</p>\",\"PeriodicalId\":55268,\"journal\":{\"name\":\"Cell Communication and Signaling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11323461/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Communication and Signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12964-024-01778-5\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-024-01778-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

卵巢颗粒细胞对促性腺激素调节的雌激素分泌、女性生理周期维持和生育能力至关重要。上皮Na+通道(ENaC)与女性的生育能力有关;然而,它是否以及如何在卵巢细胞功能中发挥作用仍未得到探索。在此,我们报告了在垂体促性腺激素、卵泡刺激素(FSH)或黄体生成素(LH)的作用下,对人类和小鼠卵巢颗粒细胞中ENaC表达和通道活性的膜片钳和Na+成像检测。基于克隆重组酶(Cre-recombinase)和CRISPR-Cas9技术的小鼠颗粒细胞特异性ENaC α亚基(Scnn1a)敲除导致成年雌性小鼠发情早期雌激素升高失败、黄体数量减少、发情期异常延长、产仔数减少和不育。利用 RNA 测序和 Ca2+ 成像等技术进行的进一步分析表明,药物抑制、基于 shRNA 的基因敲除或 ENaC 基因敲除会削弱自发或受刺激的 Ca2+ 振荡,降低细胞内 Ca2+ 储存的能力,并损害 FSH/LH 刺激的转录组变化,从而影响小鼠和/或人类颗粒细胞中雌激素的产生。这些结果共同揭示了ENaC在调节颗粒细胞中的促性腺激素信号以促进雌激素平衡从而提高女性生育能力方面所起的作用,而这一作用之前尚未得到明确定义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The epithelial Na+ channel (ENaC) in ovarian granulosa cells modulates Ca2+ mobilization and gonadotrophin signaling for estrogen homeostasis and female fertility.

Ovarian granulosa cells are essential to gonadotrophin-regulated estrogen production, female cycle maintenance and fertility. The epithelial Na+ channel (ENaC) is associated with female fertility; however, whether and how it plays a role in ovarian cell function(s) remained unexplored. Here, we report patch-clamp and Na+ imaging detection of ENaC expression and channel activity in both human and mouse ovarian granulosa cells, which are promoted by pituitary gonadotrophins, follicle stimulating hormone (FSH) or luteinizing hormone (LH). Cre-recombinase- and CRISPR-Cas9-based granulosa-specific knockout of ENaC α subunit (Scnn1a) in mice resulted in failed estrogen elevation at early estrus, reduced number of corpus luteum, abnormally extended estrus phase, reduced litter size and subfertility in adult female mice. Further analysis using technologies including RNA sequencing and Ca2+ imaging revealed that pharmacological inhibition, shRNA-based knockdown or the knockout of ENaC diminished spontaneous or stimulated Ca2+ oscillations, lowered the capacity of intracellular Ca2+ stores and impaired FSH/LH-stimulated transcriptome changes for estrogen production in mouse and/or human granulosa cells. Together, these results have revealed a previously undefined role of ENaC in modulating gonadotrophin signaling in granulosa cells for estrogen homeostasis and thus female fertility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.00
自引率
0.00%
发文量
180
期刊介绍: Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior. Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信