通过长读测序评估体内化学诱变作用

IF 3.4 3区 医学 Q2 TOXICOLOGY
Jaime A Miranda, Javier R Revollo
{"title":"通过长读测序评估体内化学诱变作用","authors":"Jaime A Miranda, Javier R Revollo","doi":"10.1093/toxsci/kfae104","DOIUrl":null,"url":null,"abstract":"<p><p>Evaluating the mutagenic properties of chemicals is crucial for understanding their potential cancer risks. Recent Illumina-based error-corrected sequencing techniques have enabled the direct detection of mutations induced de novo by mutagens. However, as the Illumina platform lacks intrinsic error-correction capabilities, complex library preparations and bioinformatic processes are necessary to identify these rare mutations. In this study, we evaluated whether long-read PacBio-based HiFi sequencing (HiFi seq), which has integrated error-correction, can detect de novo mutations induced by mutagens in C57BL/6 mouse tissues. Using HiFi seq, dose-dependent increases in mutation frequencies were found in tissues from mice exposed to 7,12-dimethylbenz[a]anthracene, procarbazine, and N-propyl-N-nitrosourea. Furthermore, the mutational signatures derived from these exposures were consistent with those previously reported for these mutagens. This study demonstrates that HiFi seq can complement established mutation detection assays to facilitate the identification of hazardous compounds.</p>","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of in vivo chemical mutagenesis by long-read sequencing.\",\"authors\":\"Jaime A Miranda, Javier R Revollo\",\"doi\":\"10.1093/toxsci/kfae104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Evaluating the mutagenic properties of chemicals is crucial for understanding their potential cancer risks. Recent Illumina-based error-corrected sequencing techniques have enabled the direct detection of mutations induced de novo by mutagens. However, as the Illumina platform lacks intrinsic error-correction capabilities, complex library preparations and bioinformatic processes are necessary to identify these rare mutations. In this study, we evaluated whether long-read PacBio-based HiFi sequencing (HiFi seq), which has integrated error-correction, can detect de novo mutations induced by mutagens in C57BL/6 mouse tissues. Using HiFi seq, dose-dependent increases in mutation frequencies were found in tissues from mice exposed to 7,12-dimethylbenz[a]anthracene, procarbazine, and N-propyl-N-nitrosourea. Furthermore, the mutational signatures derived from these exposures were consistent with those previously reported for these mutagens. This study demonstrates that HiFi seq can complement established mutation detection assays to facilitate the identification of hazardous compounds.</p>\",\"PeriodicalId\":23178,\"journal\":{\"name\":\"Toxicological Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicological Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/toxsci/kfae104\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxsci/kfae104","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

评估化学物质的诱变特性对于了解其潜在的癌症风险至关重要。最近,基于 Illumina 的纠错测序技术能够直接检测诱变剂从头诱发的突变。然而,由于 Illumina 平台缺乏固有的纠错能力,因此需要复杂的文库制备和生物信息学过程来识别这些罕见突变。在本研究中,我们评估了基于 PacBio 的 HiFi 长读数测序(HiFi seq)是否能检测出 C57BL/6 小鼠组织中由诱变剂诱导的新突变。利用 HiFi 测序技术,在暴露于 7,12-二甲基苯并[a]蒽、丙卡巴嗪和 N-丙基-亚硝基脲的小鼠组织中发现了剂量依赖性突变频率的增加。此外,从这些暴露中得出的突变特征与之前报告的这些诱变剂的突变特征一致。这项研究表明,HiFi seq 可以补充已有的突变检测方法,从而促进有害化合物的鉴定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of in vivo chemical mutagenesis by long-read sequencing.

Evaluating the mutagenic properties of chemicals is crucial for understanding their potential cancer risks. Recent Illumina-based error-corrected sequencing techniques have enabled the direct detection of mutations induced de novo by mutagens. However, as the Illumina platform lacks intrinsic error-correction capabilities, complex library preparations and bioinformatic processes are necessary to identify these rare mutations. In this study, we evaluated whether long-read PacBio-based HiFi sequencing (HiFi seq), which has integrated error-correction, can detect de novo mutations induced by mutagens in C57BL/6 mouse tissues. Using HiFi seq, dose-dependent increases in mutation frequencies were found in tissues from mice exposed to 7,12-dimethylbenz[a]anthracene, procarbazine, and N-propyl-N-nitrosourea. Furthermore, the mutational signatures derived from these exposures were consistent with those previously reported for these mutagens. This study demonstrates that HiFi seq can complement established mutation detection assays to facilitate the identification of hazardous compounds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Toxicological Sciences
Toxicological Sciences 医学-毒理学
CiteScore
7.70
自引率
7.90%
发文量
118
审稿时长
1.5 months
期刊介绍: The mission of Toxicological Sciences, the official journal of the Society of Toxicology, is to publish a broad spectrum of impactful research in the field of toxicology. The primary focus of Toxicological Sciences is on original research articles. The journal also provides expert insight via contemporary and systematic reviews, as well as forum articles and editorial content that addresses important topics in the field. The scope of Toxicological Sciences is focused on a broad spectrum of impactful toxicological research that will advance the multidisciplinary field of toxicology ranging from basic research to model development and application, and decision making. Submissions will include diverse technologies and approaches including, but not limited to: bioinformatics and computational biology, biochemistry, exposure science, histopathology, mass spectrometry, molecular biology, population-based sciences, tissue and cell-based systems, and whole-animal studies. Integrative approaches that combine realistic exposure scenarios with impactful analyses that move the field forward are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信