{"title":"用于消化系统癌症建模的微流控系统:最新进展回顾。","authors":"ZahraSadat Razavi, Madjid Soltani, Hamidreza Pazoki-Toroudi, Mahsa Dabagh","doi":"10.1088/2057-1976/ad6f15","DOIUrl":null,"url":null,"abstract":"<p><p><i>Purpose</i>. This review aims to highlight current improvements in microfluidic devices designed for digestive cancer simulation. The review emphasizes the use of multicellular 3D tissue engineering models to understand the complicated biology of the tumor microenvironment (TME) and cancer progression. The purpose is to develop oncology research and improve digestive cancer patients' lives.<i>Methods</i>. This review analyzes recent research on microfluidic devices for mimicking digestive cancer. It uses tissue-engineered microfluidic devices, notably organs on a chip (OOC), to simulate human organ function in the lab. Cell cultivation on modern three-dimensional hydrogel platforms allows precise geometry, biological components, and physiological qualities. The review analyzes novel methodologies, key findings, and technical progress to explain this field's advances.<i>Results</i>. This study discusses current advances in microfluidic devices for mimicking digestive cancer. Micro physiological systems with multicellular 3D tissue engineering models are emphasized. These systems capture complex biochemical gradients, niche variables, and dynamic cell-cell interactions in the tumor microenvironment (TME). These models reveal stomach cancer biology and progression by duplicating the TME. Recent discoveries and technology advances have improved our understanding of gut cancer biology, as shown in the review.<i>Conclusion</i>. Microfluidic systems play a crucial role in modeling digestive cancer and furthering oncology research. These platforms could transform drug development and treatment by revealing the complex biology of the tumor microenvironment and cancer progression. The review provides a complete summary of recent advances and suggests future research for field professionals. The review's major goal is to further medical research and improve digestive cancer patients' lives.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microfluidic systems for modeling digestive cancer: a review of recent progress.\",\"authors\":\"ZahraSadat Razavi, Madjid Soltani, Hamidreza Pazoki-Toroudi, Mahsa Dabagh\",\"doi\":\"10.1088/2057-1976/ad6f15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Purpose</i>. This review aims to highlight current improvements in microfluidic devices designed for digestive cancer simulation. The review emphasizes the use of multicellular 3D tissue engineering models to understand the complicated biology of the tumor microenvironment (TME) and cancer progression. The purpose is to develop oncology research and improve digestive cancer patients' lives.<i>Methods</i>. This review analyzes recent research on microfluidic devices for mimicking digestive cancer. It uses tissue-engineered microfluidic devices, notably organs on a chip (OOC), to simulate human organ function in the lab. Cell cultivation on modern three-dimensional hydrogel platforms allows precise geometry, biological components, and physiological qualities. The review analyzes novel methodologies, key findings, and technical progress to explain this field's advances.<i>Results</i>. This study discusses current advances in microfluidic devices for mimicking digestive cancer. Micro physiological systems with multicellular 3D tissue engineering models are emphasized. These systems capture complex biochemical gradients, niche variables, and dynamic cell-cell interactions in the tumor microenvironment (TME). These models reveal stomach cancer biology and progression by duplicating the TME. Recent discoveries and technology advances have improved our understanding of gut cancer biology, as shown in the review.<i>Conclusion</i>. Microfluidic systems play a crucial role in modeling digestive cancer and furthering oncology research. These platforms could transform drug development and treatment by revealing the complex biology of the tumor microenvironment and cancer progression. The review provides a complete summary of recent advances and suggests future research for field professionals. The review's major goal is to further medical research and improve digestive cancer patients' lives.</p>\",\"PeriodicalId\":8896,\"journal\":{\"name\":\"Biomedical Physics & Engineering Express\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Physics & Engineering Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2057-1976/ad6f15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad6f15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Microfluidic systems for modeling digestive cancer: a review of recent progress.
Purpose. This review aims to highlight current improvements in microfluidic devices designed for digestive cancer simulation. The review emphasizes the use of multicellular 3D tissue engineering models to understand the complicated biology of the tumor microenvironment (TME) and cancer progression. The purpose is to develop oncology research and improve digestive cancer patients' lives.Methods. This review analyzes recent research on microfluidic devices for mimicking digestive cancer. It uses tissue-engineered microfluidic devices, notably organs on a chip (OOC), to simulate human organ function in the lab. Cell cultivation on modern three-dimensional hydrogel platforms allows precise geometry, biological components, and physiological qualities. The review analyzes novel methodologies, key findings, and technical progress to explain this field's advances.Results. This study discusses current advances in microfluidic devices for mimicking digestive cancer. Micro physiological systems with multicellular 3D tissue engineering models are emphasized. These systems capture complex biochemical gradients, niche variables, and dynamic cell-cell interactions in the tumor microenvironment (TME). These models reveal stomach cancer biology and progression by duplicating the TME. Recent discoveries and technology advances have improved our understanding of gut cancer biology, as shown in the review.Conclusion. Microfluidic systems play a crucial role in modeling digestive cancer and furthering oncology research. These platforms could transform drug development and treatment by revealing the complex biology of the tumor microenvironment and cancer progression. The review provides a complete summary of recent advances and suggests future research for field professionals. The review's major goal is to further medical research and improve digestive cancer patients' lives.
期刊介绍:
BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.