W Bhowmik, B Appasani, A Gorai, A K V Jha, B P De, P K Samanta
{"title":"用于检测脑癌的十字形太赫兹超材料吸收器。","authors":"W Bhowmik, B Appasani, A Gorai, A K V Jha, B P De, P K Samanta","doi":"10.1088/2057-1976/ad6f16","DOIUrl":null,"url":null,"abstract":"<p><p>The article presents, for the first time, a terahertz metamaterial absorber (TMA) designed in the shape of a cross consisting of four orthogonally positioned horn-shaped patches in succession, to detect brain cancer cells. The design exhibits the property of mu-negative material, indicating magnetic resonance. The proposed TMA has achieved an impressive absorption rate of 99.43% at 2.334 THz and a high Q-factor of 47.15. The sensing capability has been investigated by altering the refractive index of the surrounding medium in the range of 1.3 to 1.48, resulting in a sensitivity of 0.502 THz/RIU. The proposed TMA exhibits complete polarization insensitivity, highlighting this as one of its advantageous features. The adequate sensing capability of the proposed TMA in differentiating normal and cancerous brain cells makes it a viable candidate for an early and efficient brain cancer detector. This research can be the foundation for future research on using THz radiation for brain cancer detection.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A cross-shaped terahertz metamaterial absorber for brain cancer detection.\",\"authors\":\"W Bhowmik, B Appasani, A Gorai, A K V Jha, B P De, P K Samanta\",\"doi\":\"10.1088/2057-1976/ad6f16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The article presents, for the first time, a terahertz metamaterial absorber (TMA) designed in the shape of a cross consisting of four orthogonally positioned horn-shaped patches in succession, to detect brain cancer cells. The design exhibits the property of mu-negative material, indicating magnetic resonance. The proposed TMA has achieved an impressive absorption rate of 99.43% at 2.334 THz and a high Q-factor of 47.15. The sensing capability has been investigated by altering the refractive index of the surrounding medium in the range of 1.3 to 1.48, resulting in a sensitivity of 0.502 THz/RIU. The proposed TMA exhibits complete polarization insensitivity, highlighting this as one of its advantageous features. The adequate sensing capability of the proposed TMA in differentiating normal and cancerous brain cells makes it a viable candidate for an early and efficient brain cancer detector. This research can be the foundation for future research on using THz radiation for brain cancer detection.</p>\",\"PeriodicalId\":8896,\"journal\":{\"name\":\"Biomedical Physics & Engineering Express\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Physics & Engineering Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2057-1976/ad6f16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad6f16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
A cross-shaped terahertz metamaterial absorber for brain cancer detection.
The article presents, for the first time, a terahertz metamaterial absorber (TMA) designed in the shape of a cross consisting of four orthogonally positioned horn-shaped patches in succession, to detect brain cancer cells. The design exhibits the property of mu-negative material, indicating magnetic resonance. The proposed TMA has achieved an impressive absorption rate of 99.43% at 2.334 THz and a high Q-factor of 47.15. The sensing capability has been investigated by altering the refractive index of the surrounding medium in the range of 1.3 to 1.48, resulting in a sensitivity of 0.502 THz/RIU. The proposed TMA exhibits complete polarization insensitivity, highlighting this as one of its advantageous features. The adequate sensing capability of the proposed TMA in differentiating normal and cancerous brain cells makes it a viable candidate for an early and efficient brain cancer detector. This research can be the foundation for future research on using THz radiation for brain cancer detection.
期刊介绍:
BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.