单细胞和空间全息图的优化传输

IF 50.1 Q1 MULTIDISCIPLINARY SCIENCES
Charlotte Bunne, Geoffrey Schiebinger, Andreas Krause, Aviv Regev, Marco Cuturi
{"title":"单细胞和空间全息图的优化传输","authors":"Charlotte Bunne, Geoffrey Schiebinger, Andreas Krause, Aviv Regev, Marco Cuturi","doi":"10.1038/s43586-024-00334-2","DOIUrl":null,"url":null,"abstract":"High-throughput single-cell profiling provides an unprecedented ability to uncover the molecular states of millions of cells. These technologies are, however, destructive to cells and tissues, raising practical challenges when aiming to track dynamic biological processes. As the same cell cannot be observed at multiple time points, as it changes in time and space in response to a stimulus or perturbation, these large-scale measurements only produce unaligned data sets. In this Primer, we show how such challenges can be effectively addressed using the unifying framework of optimal transport theory and tackled using the many algorithms that have been proposed for the range of scenarios of key interest in computational biology. We further review recent advances integrating optimal transport and deep learning that allow forecasting heterogeneous cellular dynamics and behaviour, crucial in particular for pressing problems in personalized medicine. The optimal transport mathematical framework can be used to describe how source populations, such as populations of single cells, can morph into another target population. In this Primer, Bunne et al. describe how optimal transport theory is used for analysing single-cell data.","PeriodicalId":74250,"journal":{"name":"Nature reviews. Methods primers","volume":" ","pages":"1-21"},"PeriodicalIF":50.1000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal transport for single-cell and spatial omics\",\"authors\":\"Charlotte Bunne, Geoffrey Schiebinger, Andreas Krause, Aviv Regev, Marco Cuturi\",\"doi\":\"10.1038/s43586-024-00334-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-throughput single-cell profiling provides an unprecedented ability to uncover the molecular states of millions of cells. These technologies are, however, destructive to cells and tissues, raising practical challenges when aiming to track dynamic biological processes. As the same cell cannot be observed at multiple time points, as it changes in time and space in response to a stimulus or perturbation, these large-scale measurements only produce unaligned data sets. In this Primer, we show how such challenges can be effectively addressed using the unifying framework of optimal transport theory and tackled using the many algorithms that have been proposed for the range of scenarios of key interest in computational biology. We further review recent advances integrating optimal transport and deep learning that allow forecasting heterogeneous cellular dynamics and behaviour, crucial in particular for pressing problems in personalized medicine. The optimal transport mathematical framework can be used to describe how source populations, such as populations of single cells, can morph into another target population. In this Primer, Bunne et al. describe how optimal transport theory is used for analysing single-cell data.\",\"PeriodicalId\":74250,\"journal\":{\"name\":\"Nature reviews. Methods primers\",\"volume\":\" \",\"pages\":\"1-21\"},\"PeriodicalIF\":50.1000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature reviews. Methods primers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43586-024-00334-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature reviews. Methods primers","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43586-024-00334-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

高通量单细胞分析为揭示数百万个细胞的分子状态提供了前所未有的能力。然而,这些技术对细胞和组织具有破坏性,给追踪动态生物过程带来了实际挑战。由于无法在多个时间点观察同一个细胞,因为它在时间和空间上会随着刺激或扰动的变化而变化,因此这些大规模测量只能产生不对齐的数据集。在本《入门》中,我们将展示如何利用最优输运理论的统一框架有效地应对这些挑战,以及如何利用针对计算生物学中的一系列关键问题提出的多种算法来解决这些问题。我们将进一步回顾集成了最优传输和深度学习的最新进展,这些进展可以预测异质细胞的动态和行为,尤其对个性化医疗的紧迫问题至关重要。最优传输数学框架可用于描述源群体(如单细胞群体)如何变形为另一个目标群体。在本入门指南中,Bunne 等人介绍了如何利用最优传输理论分析单细胞数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimal transport for single-cell and spatial omics

Optimal transport for single-cell and spatial omics
High-throughput single-cell profiling provides an unprecedented ability to uncover the molecular states of millions of cells. These technologies are, however, destructive to cells and tissues, raising practical challenges when aiming to track dynamic biological processes. As the same cell cannot be observed at multiple time points, as it changes in time and space in response to a stimulus or perturbation, these large-scale measurements only produce unaligned data sets. In this Primer, we show how such challenges can be effectively addressed using the unifying framework of optimal transport theory and tackled using the many algorithms that have been proposed for the range of scenarios of key interest in computational biology. We further review recent advances integrating optimal transport and deep learning that allow forecasting heterogeneous cellular dynamics and behaviour, crucial in particular for pressing problems in personalized medicine. The optimal transport mathematical framework can be used to describe how source populations, such as populations of single cells, can morph into another target population. In this Primer, Bunne et al. describe how optimal transport theory is used for analysing single-cell data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
46.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信