{"title":"利用近红外光谱(NIRS)和多元统计快速测量可溶性xylo-异构体:校准模型开发和模型优化的实用方法","authors":"Zofia Tillman, Kevin Gray, Edward Wolfrum","doi":"10.1186/s13068-024-02558-6","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Rapid monitoring of biomass conversion processes using techniques such as near-infrared (NIR) spectroscopy can be substantially quicker and less labor-, resource-, and energy-intensive than conventional measurement techniques such as gas or liquid chromatography (GC or LC) due to the lack of solvents and preparation methods, as well as removing the need to transfer samples to an external lab for analytical evaluation. The purpose of this study was to determine the feasibility of rapid monitoring of a biomass conversion process using NIR spectroscopy combined with multivariate statistical modeling, and to examine the impact of (1) subsetting the samples in the original dataset by process location and (2) reducing the spectral range used in the calibration model on model performance.</p><h3>Results</h3><p>We develop multivariate calibration models for the concentrations of soluble xylo-oligosaccharides (XOS), monomeric xylose, and total solids at multiple points in a biomass conversion process which produces and then purifies XOS compounds from sugar cane bagasse. A single model using samples from multiple locations in the process stream showed acceptable performance as measured by standard statistical measures. However, compared to the single model, we show that separate models built by segregating the calibration samples according to process location show improved performance. We also show that combining an understanding of the sample spectra with simple multivariate analysis tools can result in a calibration model with a substantially smaller spectral range that provides essentially equal performance to the full-range model.</p><h3>Conclusions</h3><p>We demonstrate that real-time monitoring of soluble xylo-oligosaccharides (XOS), monomeric xylose, and total solids concentration at multiple points in a process stream using NIR spectroscopy coupled with multivariate statistics is feasible. Segregation of sample populations by process location improves model performance. Models using a reduced spectral range containing the most relevant spectral signatures show very similar performance to the full-range model, reinforcing the importance of performing robust exploratory data analysis before beginning multivariate modeling.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"17 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-024-02558-6","citationCount":"0","resultStr":"{\"title\":\"Rapid measurement of soluble xylo-oligomers using near-infrared spectroscopy (NIRS) and multivariate statistics: calibration model development and practical approaches to model optimization\",\"authors\":\"Zofia Tillman, Kevin Gray, Edward Wolfrum\",\"doi\":\"10.1186/s13068-024-02558-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Rapid monitoring of biomass conversion processes using techniques such as near-infrared (NIR) spectroscopy can be substantially quicker and less labor-, resource-, and energy-intensive than conventional measurement techniques such as gas or liquid chromatography (GC or LC) due to the lack of solvents and preparation methods, as well as removing the need to transfer samples to an external lab for analytical evaluation. The purpose of this study was to determine the feasibility of rapid monitoring of a biomass conversion process using NIR spectroscopy combined with multivariate statistical modeling, and to examine the impact of (1) subsetting the samples in the original dataset by process location and (2) reducing the spectral range used in the calibration model on model performance.</p><h3>Results</h3><p>We develop multivariate calibration models for the concentrations of soluble xylo-oligosaccharides (XOS), monomeric xylose, and total solids at multiple points in a biomass conversion process which produces and then purifies XOS compounds from sugar cane bagasse. A single model using samples from multiple locations in the process stream showed acceptable performance as measured by standard statistical measures. However, compared to the single model, we show that separate models built by segregating the calibration samples according to process location show improved performance. We also show that combining an understanding of the sample spectra with simple multivariate analysis tools can result in a calibration model with a substantially smaller spectral range that provides essentially equal performance to the full-range model.</p><h3>Conclusions</h3><p>We demonstrate that real-time monitoring of soluble xylo-oligosaccharides (XOS), monomeric xylose, and total solids concentration at multiple points in a process stream using NIR spectroscopy coupled with multivariate statistics is feasible. Segregation of sample populations by process location improves model performance. Models using a reduced spectral range containing the most relevant spectral signatures show very similar performance to the full-range model, reinforcing the importance of performing robust exploratory data analysis before beginning multivariate modeling.</p></div>\",\"PeriodicalId\":494,\"journal\":{\"name\":\"Biotechnology for Biofuels\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-024-02558-6\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology for Biofuels\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13068-024-02558-6\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-024-02558-6","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Rapid measurement of soluble xylo-oligomers using near-infrared spectroscopy (NIRS) and multivariate statistics: calibration model development and practical approaches to model optimization
Background
Rapid monitoring of biomass conversion processes using techniques such as near-infrared (NIR) spectroscopy can be substantially quicker and less labor-, resource-, and energy-intensive than conventional measurement techniques such as gas or liquid chromatography (GC or LC) due to the lack of solvents and preparation methods, as well as removing the need to transfer samples to an external lab for analytical evaluation. The purpose of this study was to determine the feasibility of rapid monitoring of a biomass conversion process using NIR spectroscopy combined with multivariate statistical modeling, and to examine the impact of (1) subsetting the samples in the original dataset by process location and (2) reducing the spectral range used in the calibration model on model performance.
Results
We develop multivariate calibration models for the concentrations of soluble xylo-oligosaccharides (XOS), monomeric xylose, and total solids at multiple points in a biomass conversion process which produces and then purifies XOS compounds from sugar cane bagasse. A single model using samples from multiple locations in the process stream showed acceptable performance as measured by standard statistical measures. However, compared to the single model, we show that separate models built by segregating the calibration samples according to process location show improved performance. We also show that combining an understanding of the sample spectra with simple multivariate analysis tools can result in a calibration model with a substantially smaller spectral range that provides essentially equal performance to the full-range model.
Conclusions
We demonstrate that real-time monitoring of soluble xylo-oligosaccharides (XOS), monomeric xylose, and total solids concentration at multiple points in a process stream using NIR spectroscopy coupled with multivariate statistics is feasible. Segregation of sample populations by process location improves model performance. Models using a reduced spectral range containing the most relevant spectral signatures show very similar performance to the full-range model, reinforcing the importance of performing robust exploratory data analysis before beginning multivariate modeling.
期刊介绍:
Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass.
Biotechnology for Biofuels focuses on the following areas:
• Development of terrestrial plant feedstocks
• Development of algal feedstocks
• Biomass pretreatment, fractionation and extraction for biological conversion
• Enzyme engineering, production and analysis
• Bacterial genetics, physiology and metabolic engineering
• Fungal/yeast genetics, physiology and metabolic engineering
• Fermentation, biocatalytic conversion and reaction dynamics
• Biological production of chemicals and bioproducts from biomass
• Anaerobic digestion, biohydrogen and bioelectricity
• Bioprocess integration, techno-economic analysis, modelling and policy
• Life cycle assessment and environmental impact analysis