金融交易结算优化中的指数比特缩减

IF 5.8 2区 物理与天体物理 Q1 OPTICS
Elias X. Huber, Benjamin Y. L. Tan, Paul R. Griffin, Dimitris G. Angelakis
{"title":"金融交易结算优化中的指数比特缩减","authors":"Elias X. Huber,&nbsp;Benjamin Y. L. Tan,&nbsp;Paul R. Griffin,&nbsp;Dimitris G. Angelakis","doi":"10.1140/epjqt/s40507-024-00262-w","DOIUrl":null,"url":null,"abstract":"<div><p>We extend the qubit-efficient encoding presented in (Tan et al. in Quantum 5:454, 2021) and apply it to instances of the financial transaction settlement problem constructed from data provided by a regulated financial exchange. Our methods are directly applicable to any QUBO problem with linear inequality constraints. Our extension of previously proposed methods consists of a simplification in varying the number of qubits used to encode correlations as well as a new class of variational circuits which incorporate symmetries thereby reducing sampling overhead, improving numerical stability and recovering the expression of the cost objective as a Hermitian observable. We also propose optimality-preserving methods to reduce variance in real-world data and substitute continuous slack variables. We benchmark our methods against standard QAOA for problems consisting of 16 transactions and obtain competitive results. Our newly proposed variational ansatz performs best overall. We demonstrate tackling problems with 128 transactions on real quantum hardware, exceeding previous results bounded by NISQ hardware by almost two orders of magnitude.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00262-w","citationCount":"0","resultStr":"{\"title\":\"Exponential qubit reduction in optimization for financial transaction settlement\",\"authors\":\"Elias X. Huber,&nbsp;Benjamin Y. L. Tan,&nbsp;Paul R. Griffin,&nbsp;Dimitris G. Angelakis\",\"doi\":\"10.1140/epjqt/s40507-024-00262-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We extend the qubit-efficient encoding presented in (Tan et al. in Quantum 5:454, 2021) and apply it to instances of the financial transaction settlement problem constructed from data provided by a regulated financial exchange. Our methods are directly applicable to any QUBO problem with linear inequality constraints. Our extension of previously proposed methods consists of a simplification in varying the number of qubits used to encode correlations as well as a new class of variational circuits which incorporate symmetries thereby reducing sampling overhead, improving numerical stability and recovering the expression of the cost objective as a Hermitian observable. We also propose optimality-preserving methods to reduce variance in real-world data and substitute continuous slack variables. We benchmark our methods against standard QAOA for problems consisting of 16 transactions and obtain competitive results. Our newly proposed variational ansatz performs best overall. We demonstrate tackling problems with 128 transactions on real quantum hardware, exceeding previous results bounded by NISQ hardware by almost two orders of magnitude.</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00262-w\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-024-00262-w\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-024-00262-w","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

我们扩展了《量子 5:454, 2021》(Tan et al. in Quantum 5:454,2021)中提出的量子比特高效编码,并将其应用于根据受监管的金融交易所提供的数据构建的金融交易结算问题实例。我们的方法直接适用于任何具有线性不等式约束的 QUBO 问题。我们对以前提出的方法进行了扩展,简化了用于编码相关性的量子比特数量,并提出了一类新的变分电路,该电路包含对称性,从而减少了采样开销,提高了数值稳定性,并恢复了成本目标作为赫米特可观测变量的表达式。我们还提出了保留最优性的方法,以减少真实世界数据中的方差并替代连续松弛变量。我们针对由 16 个事务组成的问题,用标准 QAOA 对我们的方法进行了基准测试,并获得了有竞争力的结果。我们新提出的变分解析法总体表现最佳。我们演示了如何在真实量子硬件上处理 128 个事务的问题,其结果超出了之前以 NISQ 硬件为界的结果近两个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exponential qubit reduction in optimization for financial transaction settlement

We extend the qubit-efficient encoding presented in (Tan et al. in Quantum 5:454, 2021) and apply it to instances of the financial transaction settlement problem constructed from data provided by a regulated financial exchange. Our methods are directly applicable to any QUBO problem with linear inequality constraints. Our extension of previously proposed methods consists of a simplification in varying the number of qubits used to encode correlations as well as a new class of variational circuits which incorporate symmetries thereby reducing sampling overhead, improving numerical stability and recovering the expression of the cost objective as a Hermitian observable. We also propose optimality-preserving methods to reduce variance in real-world data and substitute continuous slack variables. We benchmark our methods against standard QAOA for problems consisting of 16 transactions and obtain competitive results. Our newly proposed variational ansatz performs best overall. We demonstrate tackling problems with 128 transactions on real quantum hardware, exceeding previous results bounded by NISQ hardware by almost two orders of magnitude.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信