代数、几何和微分方程中的符号计算

IF 0.8 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Franz Winkler
{"title":"代数、几何和微分方程中的符号计算","authors":"Franz Winkler","doi":"10.1016/j.ic.2024.105200","DOIUrl":null,"url":null,"abstract":"<div><p>In this survey article we describe how symbolic computation in algebra and geometry leads to symbolic, i.e., formula solutions of algebraic differential equations. Symbolic solutions of algebraic differential equations can be derived from parametrizations of corresponding algebraic varieties. Such parametrizations in turn can be computed by elimination methods, i.e., methods for solving systems of polynomial equations.</p></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"301 ","pages":"Article 105200"},"PeriodicalIF":0.8000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0890540124000658/pdfft?md5=0b04bde55234c483e1cb8b3d2f7312e3&pid=1-s2.0-S0890540124000658-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Symbolic computation in algebra, geometry, and differential equations\",\"authors\":\"Franz Winkler\",\"doi\":\"10.1016/j.ic.2024.105200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this survey article we describe how symbolic computation in algebra and geometry leads to symbolic, i.e., formula solutions of algebraic differential equations. Symbolic solutions of algebraic differential equations can be derived from parametrizations of corresponding algebraic varieties. Such parametrizations in turn can be computed by elimination methods, i.e., methods for solving systems of polynomial equations.</p></div>\",\"PeriodicalId\":54985,\"journal\":{\"name\":\"Information and Computation\",\"volume\":\"301 \",\"pages\":\"Article 105200\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0890540124000658/pdfft?md5=0b04bde55234c483e1cb8b3d2f7312e3&pid=1-s2.0-S0890540124000658-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0890540124000658\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890540124000658","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在这篇调查文章中,我们描述了代数与几何中的符号计算如何导致代数微分方程的符号解,即公式解。代数微分方程的符号解可以从相应代数变量的参数化推导出来。这些参数反过来又可以通过消元法(即求解多项式方程组的方法)计算出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symbolic computation in algebra, geometry, and differential equations

In this survey article we describe how symbolic computation in algebra and geometry leads to symbolic, i.e., formula solutions of algebraic differential equations. Symbolic solutions of algebraic differential equations can be derived from parametrizations of corresponding algebraic varieties. Such parametrizations in turn can be computed by elimination methods, i.e., methods for solving systems of polynomial equations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information and Computation
Information and Computation 工程技术-计算机:理论方法
CiteScore
2.30
自引率
0.00%
发文量
119
审稿时长
140 days
期刊介绍: Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as -Biological computation and computational biology- Computational complexity- Computer theorem-proving- Concurrency and distributed process theory- Cryptographic theory- Data base theory- Decision problems in logic- Design and analysis of algorithms- Discrete optimization and mathematical programming- Inductive inference and learning theory- Logic & constraint programming- Program verification & model checking- Probabilistic & Quantum computation- Semantics of programming languages- Symbolic computation, lambda calculus, and rewriting systems- Types and typechecking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信