三元钛-钼-铪体系的实验研究和热力学评估

IF 1.9 3区 材料科学 Q4 CHEMISTRY, PHYSICAL
Guangcheng Xiao, Yuduo Wei, Yueyan Tian, Lideng Ye, Jifeng Yang, Kaige Wang, Zixuan Deng, Ligang Zhang, Libin Liu
{"title":"三元钛-钼-铪体系的实验研究和热力学评估","authors":"Guangcheng Xiao,&nbsp;Yuduo Wei,&nbsp;Yueyan Tian,&nbsp;Lideng Ye,&nbsp;Jifeng Yang,&nbsp;Kaige Wang,&nbsp;Zixuan Deng,&nbsp;Ligang Zhang,&nbsp;Libin Liu","doi":"10.1016/j.calphad.2024.102725","DOIUrl":null,"url":null,"abstract":"<div><p>Based on experimental data measured by scanning electron microscope (SEM), X-ray diffraction (XRD) and electron probe microanalysis (EPMA), isothermal sections of Ti–Mo-Hf system at 800 °C and 1000 °C were constructed. Four and three three-phase regions were derived in the isothermal sections at 800 and 1000 °C, respectively. In addition, a new ternary compound named τ was discovered. The maximum solubilities of the three elements, Ti, Mo and Hf in τ were measured at 800 °C and 1000 °C. At the same time, the solid solubilities of Ti in HfMo<sub>2</sub>_C15 and Mo in Hcp were also obtained. According to the measured experimental data, the Ti–Mo-Hf system was optimized using the CALPHAD (CALculation of PHAse Diagrams) method. The solution phases, liquid, Bcc and Hcp, were treated as substitutional solution, while the intermetallic compounds were modeled using sublattice models. HfMo<sub>2</sub>_C15 was treated as (Hf, Mo, Ti)<sub>1</sub>(Hf, Mo, Ti)<sub>2</sub>. The ternary phase τ was considered as a stoichiometric compound and its thermodynamic modeling was defined as (Ti)<sub>3</sub>(Mo)<sub>3(</sub>Hf)<sub>14</sub>. The calculated results showed good agreement with the experimental phase equilibrium data, leading to the derivation of a set of self-consistent thermodynamic parameters for the Ti–Mo-Hf system.</p></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":"86 ","pages":"Article 102725"},"PeriodicalIF":1.9000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experiment investigation and thermodynamic assessment of the ternary Ti–Mo-Hf system\",\"authors\":\"Guangcheng Xiao,&nbsp;Yuduo Wei,&nbsp;Yueyan Tian,&nbsp;Lideng Ye,&nbsp;Jifeng Yang,&nbsp;Kaige Wang,&nbsp;Zixuan Deng,&nbsp;Ligang Zhang,&nbsp;Libin Liu\",\"doi\":\"10.1016/j.calphad.2024.102725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Based on experimental data measured by scanning electron microscope (SEM), X-ray diffraction (XRD) and electron probe microanalysis (EPMA), isothermal sections of Ti–Mo-Hf system at 800 °C and 1000 °C were constructed. Four and three three-phase regions were derived in the isothermal sections at 800 and 1000 °C, respectively. In addition, a new ternary compound named τ was discovered. The maximum solubilities of the three elements, Ti, Mo and Hf in τ were measured at 800 °C and 1000 °C. At the same time, the solid solubilities of Ti in HfMo<sub>2</sub>_C15 and Mo in Hcp were also obtained. According to the measured experimental data, the Ti–Mo-Hf system was optimized using the CALPHAD (CALculation of PHAse Diagrams) method. The solution phases, liquid, Bcc and Hcp, were treated as substitutional solution, while the intermetallic compounds were modeled using sublattice models. HfMo<sub>2</sub>_C15 was treated as (Hf, Mo, Ti)<sub>1</sub>(Hf, Mo, Ti)<sub>2</sub>. The ternary phase τ was considered as a stoichiometric compound and its thermodynamic modeling was defined as (Ti)<sub>3</sub>(Mo)<sub>3(</sub>Hf)<sub>14</sub>. The calculated results showed good agreement with the experimental phase equilibrium data, leading to the derivation of a set of self-consistent thermodynamic parameters for the Ti–Mo-Hf system.</p></div>\",\"PeriodicalId\":9436,\"journal\":{\"name\":\"Calphad-computer Coupling of Phase Diagrams and Thermochemistry\",\"volume\":\"86 \",\"pages\":\"Article 102725\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calphad-computer Coupling of Phase Diagrams and Thermochemistry\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0364591624000671\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0364591624000671","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

根据扫描电子显微镜(SEM)、X 射线衍射(XRD)和电子探针显微分析(EPMA)测得的实验数据,构建了 800 ℃ 和 1000 ℃ 时 Ti-Mo-Hf 系统的等温截面。在 800 ℃ 和 1000 ℃ 的等温截面中分别得出了四个和三个三相区域。此外,还发现了一种名为 τ 的新三元化合物。在 800 ℃ 和 1000 ℃ 时,测量了三种元素 Ti、Mo 和 Hf 在 τ 中的最大溶解度。同时,还获得了 Ti 在 HfMo2_C15 中的固溶解度和 Mo 在 Hcp 中的固溶解度。根据测得的实验数据,采用 CALPHAD(CALculation of PHAse Diagrams)方法对 Ti-Mo-Hf 体系进行了优化。液相、Bcc 和 Hcp 被视为置换溶液,而金属间化合物则使用亚晶格模型进行建模。HfMo2_C15 被视为 (Hf、Mo、Ti)1(Hf、Mo、Ti)2。三元相 τ 被视为化学计量化合物,其热力学模型被定义为 (Ti)3(Mo)3(Hf)14。计算结果与实验相平衡数据显示出良好的一致性,从而推导出一套自洽的 Ti-Mo-Hf 系统热力学参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experiment investigation and thermodynamic assessment of the ternary Ti–Mo-Hf system

Based on experimental data measured by scanning electron microscope (SEM), X-ray diffraction (XRD) and electron probe microanalysis (EPMA), isothermal sections of Ti–Mo-Hf system at 800 °C and 1000 °C were constructed. Four and three three-phase regions were derived in the isothermal sections at 800 and 1000 °C, respectively. In addition, a new ternary compound named τ was discovered. The maximum solubilities of the three elements, Ti, Mo and Hf in τ were measured at 800 °C and 1000 °C. At the same time, the solid solubilities of Ti in HfMo2_C15 and Mo in Hcp were also obtained. According to the measured experimental data, the Ti–Mo-Hf system was optimized using the CALPHAD (CALculation of PHAse Diagrams) method. The solution phases, liquid, Bcc and Hcp, were treated as substitutional solution, while the intermetallic compounds were modeled using sublattice models. HfMo2_C15 was treated as (Hf, Mo, Ti)1(Hf, Mo, Ti)2. The ternary phase τ was considered as a stoichiometric compound and its thermodynamic modeling was defined as (Ti)3(Mo)3(Hf)14. The calculated results showed good agreement with the experimental phase equilibrium data, leading to the derivation of a set of self-consistent thermodynamic parameters for the Ti–Mo-Hf system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
16.70%
发文量
94
审稿时长
2.5 months
期刊介绍: The design of industrial processes requires reliable thermodynamic data. CALPHAD (Computer Coupling of Phase Diagrams and Thermochemistry) aims to promote computational thermodynamics through development of models to represent thermodynamic properties for various phases which permit prediction of properties of multicomponent systems from those of binary and ternary subsystems, critical assessment of data and their incorporation into self-consistent databases, development of software to optimize and derive thermodynamic parameters and the development and use of databanks for calculations to improve understanding of various industrial and technological processes. This work is disseminated through the CALPHAD journal and its annual conference.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信