几何非线性基尔霍夫-洛夫壳的计算高效无锁定等几何离散化

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
{"title":"几何非线性基尔霍夫-洛夫壳的计算高效无锁定等几何离散化","authors":"","doi":"10.1016/j.cma.2024.117280","DOIUrl":null,"url":null,"abstract":"<div><p>Discretizations based on the Bubnov-Galerkin method and the isoparametric concept suffer from membrane locking when applied to Kirchhoff–Love shell formulations. Membrane locking causes not only smaller displacements than expected, but also large-amplitude spurious oscillations of the membrane forces. Continuous-assumed-strain (CAS) elements were originally introduced to remove membrane locking in quadratic NURBS-based discretizations of linear plane curved Kirchhoff rods (Casquero et al., CMAME, 2022). In this work, we propose <span><math><msup><mrow><mtext>CAS</mtext></mrow><mrow><mtext>s</mtext></mrow></msup></math></span> and <span><math><msup><mrow><mtext>CAS</mtext></mrow><mrow><mtext>ns</mtext></mrow></msup></math></span> elements to overcome membrane locking in quadratic NURBS-based discretizations of geometrically nonlinear Kirchhoff–Love shells. <span><math><msup><mrow><mtext>CAS</mtext></mrow><mrow><mtext>s</mtext></mrow></msup></math></span> and <span><math><msup><mrow><mtext>CAS</mtext></mrow><mrow><mtext>ns</mtext></mrow></msup></math></span> elements are interpolation-based assumed-strain locking treatments. The assumed strains have <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span> continuity across element boundaries and different components of the membrane strains are interpolated at different interpolation points. <span><math><msup><mrow><mtext>CAS</mtext></mrow><mrow><mtext>s</mtext></mrow></msup></math></span> elements use the assumed strains to obtain both the physical strains and the virtual strains, which results in a global tangent matrix which is a symmetric matrix. <span><math><msup><mrow><mtext>CAS</mtext></mrow><mrow><mtext>ns</mtext></mrow></msup></math></span> elements use the assumed strains to obtain only the physical strains, which results in a global tangent matrix which is a non-symmetric matrix. To the best of the authors’ knowledge, <span><math><msup><mrow><mtext>CAS</mtext></mrow><mrow><mtext>s</mtext></mrow></msup></math></span> and <span><math><msup><mrow><mtext>CAS</mtext></mrow><mrow><mtext>ns</mtext></mrow></msup></math></span> elements are the first assumed-strain treatments to effectively overcome membrane locking in quadratic NURBS-based discretizations of geometrically nonlinear Kirchhoff–Love shells while satisfying the following important characteristics for computational efficiency: (1) No additional unknowns are added, (2) No additional systems of algebraic equations need to be solved, (3) The same elements are used to approximate the displacements and the assumed strains, (4) No additional matrix operations such as matrix inversions or matrix multiplications are needed to obtain the stiffness matrix, and (5) The nonzero pattern of the stiffness matrix is preserved. Analogously to the interpolation-based assumed-strain locking treatments for Lagrange polynomials that are widely used in commercial FEA software, the implementation of <span><math><msup><mrow><mtext>CAS</mtext></mrow><mrow><mtext>s</mtext></mrow></msup></math></span> and <span><math><msup><mrow><mtext>CAS</mtext></mrow><mrow><mtext>ns</mtext></mrow></msup></math></span> elements only requires to modify the subroutine that computes the element residual vector and the element tangent matrix. The benchmark problems show that <span><math><msup><mrow><mtext>CAS</mtext></mrow><mrow><mtext>s</mtext></mrow></msup></math></span> and <span><math><msup><mrow><mtext>CAS</mtext></mrow><mrow><mtext>ns</mtext></mrow></msup></math></span> elements, using either 2 × 2 or 3 × 3 Gauss–Legendre quadrature points per element, are effective locking treatments since these element types result in more accurate displacements for coarse meshes and excise the spurious oscillations of the membrane forces.</p></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computationally-efficient locking-free isogeometric discretizations of geometrically nonlinear Kirchhoff–Love shells\",\"authors\":\"\",\"doi\":\"10.1016/j.cma.2024.117280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Discretizations based on the Bubnov-Galerkin method and the isoparametric concept suffer from membrane locking when applied to Kirchhoff–Love shell formulations. Membrane locking causes not only smaller displacements than expected, but also large-amplitude spurious oscillations of the membrane forces. Continuous-assumed-strain (CAS) elements were originally introduced to remove membrane locking in quadratic NURBS-based discretizations of linear plane curved Kirchhoff rods (Casquero et al., CMAME, 2022). In this work, we propose <span><math><msup><mrow><mtext>CAS</mtext></mrow><mrow><mtext>s</mtext></mrow></msup></math></span> and <span><math><msup><mrow><mtext>CAS</mtext></mrow><mrow><mtext>ns</mtext></mrow></msup></math></span> elements to overcome membrane locking in quadratic NURBS-based discretizations of geometrically nonlinear Kirchhoff–Love shells. <span><math><msup><mrow><mtext>CAS</mtext></mrow><mrow><mtext>s</mtext></mrow></msup></math></span> and <span><math><msup><mrow><mtext>CAS</mtext></mrow><mrow><mtext>ns</mtext></mrow></msup></math></span> elements are interpolation-based assumed-strain locking treatments. The assumed strains have <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span> continuity across element boundaries and different components of the membrane strains are interpolated at different interpolation points. <span><math><msup><mrow><mtext>CAS</mtext></mrow><mrow><mtext>s</mtext></mrow></msup></math></span> elements use the assumed strains to obtain both the physical strains and the virtual strains, which results in a global tangent matrix which is a symmetric matrix. <span><math><msup><mrow><mtext>CAS</mtext></mrow><mrow><mtext>ns</mtext></mrow></msup></math></span> elements use the assumed strains to obtain only the physical strains, which results in a global tangent matrix which is a non-symmetric matrix. To the best of the authors’ knowledge, <span><math><msup><mrow><mtext>CAS</mtext></mrow><mrow><mtext>s</mtext></mrow></msup></math></span> and <span><math><msup><mrow><mtext>CAS</mtext></mrow><mrow><mtext>ns</mtext></mrow></msup></math></span> elements are the first assumed-strain treatments to effectively overcome membrane locking in quadratic NURBS-based discretizations of geometrically nonlinear Kirchhoff–Love shells while satisfying the following important characteristics for computational efficiency: (1) No additional unknowns are added, (2) No additional systems of algebraic equations need to be solved, (3) The same elements are used to approximate the displacements and the assumed strains, (4) No additional matrix operations such as matrix inversions or matrix multiplications are needed to obtain the stiffness matrix, and (5) The nonzero pattern of the stiffness matrix is preserved. Analogously to the interpolation-based assumed-strain locking treatments for Lagrange polynomials that are widely used in commercial FEA software, the implementation of <span><math><msup><mrow><mtext>CAS</mtext></mrow><mrow><mtext>s</mtext></mrow></msup></math></span> and <span><math><msup><mrow><mtext>CAS</mtext></mrow><mrow><mtext>ns</mtext></mrow></msup></math></span> elements only requires to modify the subroutine that computes the element residual vector and the element tangent matrix. The benchmark problems show that <span><math><msup><mrow><mtext>CAS</mtext></mrow><mrow><mtext>s</mtext></mrow></msup></math></span> and <span><math><msup><mrow><mtext>CAS</mtext></mrow><mrow><mtext>ns</mtext></mrow></msup></math></span> elements, using either 2 × 2 or 3 × 3 Gauss–Legendre quadrature points per element, are effective locking treatments since these element types result in more accurate displacements for coarse meshes and excise the spurious oscillations of the membrane forces.</p></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S004578252400536X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004578252400536X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

将基于布勃诺夫-加勒金方法和等参数概念的离散化应用于基尔霍夫-洛夫壳公式时,会出现膜锁定现象。膜锁定不仅会导致比预期更小的位移,还会导致膜力的大振幅虚假振荡。连续假定应变(CAS)元素最初是为了消除基于二次 NURBS 的线性平面曲线基尔霍夫杆离散化中的膜锁定而引入的(Casquero 等人,CMAME,2022 年)。在这项工作中,我们提出了 CASs 和 CASns 元素,以克服基于二次 NURBS 的几何非线性 Kirchhoff-Love 壳体离散计算中的膜锁定问题。CASs 和 CASns 元素是基于插值的假定应变锁定处理方法。假定应变在元素边界上具有 C0 连续性,膜应变的不同分量在不同插值点进行插值。CASs 元素使用假定应变获得物理应变和虚拟应变,从而得到一个全局切矩阵,该矩阵是一个对称矩阵。CASns 元素只使用假定应变来获取物理应变,从而得到一个非对称的全局切矩阵。据作者所知,CASs 和 CASns 元素是第一种假定应变处理方法,可有效克服基于二次 NURBS 的几何非线性 Kirchhoff-Love 壳体离散中的膜锁定问题,同时满足计算效率的以下重要特征:(1) 无需添加额外的未知数;(2) 无需求解额外的代数方程系统;(3) 使用相同的元素来近似位移和假定应变;(4) 无需进行额外的矩阵运算(如矩阵反转或矩阵乘法)来获得刚度矩阵;(5) 保留刚度矩阵的非零模式。与商业有限元分析软件中广泛使用的基于插值的拉格朗日多项式假定应变锁定处理类似,CASs 和 CASns 元素的实现只需修改计算元素残差向量和元素正切矩阵的子程序。基准问题表明,每个元素使用 2 × 2 或 3 × 3 Gauss-Legendre 正交点的 CASs 和 CASns 元素是有效的锁定处理方法,因为这些元素类型可为粗网格带来更精确的位移,并消除膜力的虚假振荡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computationally-efficient locking-free isogeometric discretizations of geometrically nonlinear Kirchhoff–Love shells

Discretizations based on the Bubnov-Galerkin method and the isoparametric concept suffer from membrane locking when applied to Kirchhoff–Love shell formulations. Membrane locking causes not only smaller displacements than expected, but also large-amplitude spurious oscillations of the membrane forces. Continuous-assumed-strain (CAS) elements were originally introduced to remove membrane locking in quadratic NURBS-based discretizations of linear plane curved Kirchhoff rods (Casquero et al., CMAME, 2022). In this work, we propose CASs and CASns elements to overcome membrane locking in quadratic NURBS-based discretizations of geometrically nonlinear Kirchhoff–Love shells. CASs and CASns elements are interpolation-based assumed-strain locking treatments. The assumed strains have C0 continuity across element boundaries and different components of the membrane strains are interpolated at different interpolation points. CASs elements use the assumed strains to obtain both the physical strains and the virtual strains, which results in a global tangent matrix which is a symmetric matrix. CASns elements use the assumed strains to obtain only the physical strains, which results in a global tangent matrix which is a non-symmetric matrix. To the best of the authors’ knowledge, CASs and CASns elements are the first assumed-strain treatments to effectively overcome membrane locking in quadratic NURBS-based discretizations of geometrically nonlinear Kirchhoff–Love shells while satisfying the following important characteristics for computational efficiency: (1) No additional unknowns are added, (2) No additional systems of algebraic equations need to be solved, (3) The same elements are used to approximate the displacements and the assumed strains, (4) No additional matrix operations such as matrix inversions or matrix multiplications are needed to obtain the stiffness matrix, and (5) The nonzero pattern of the stiffness matrix is preserved. Analogously to the interpolation-based assumed-strain locking treatments for Lagrange polynomials that are widely used in commercial FEA software, the implementation of CASs and CASns elements only requires to modify the subroutine that computes the element residual vector and the element tangent matrix. The benchmark problems show that CASs and CASns elements, using either 2 × 2 or 3 × 3 Gauss–Legendre quadrature points per element, are effective locking treatments since these element types result in more accurate displacements for coarse meshes and excise the spurious oscillations of the membrane forces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信