平均曲率流的平移环面

IF 1.5 1区 数学 Q1 MATHEMATICS
David Hoffman , Francisco Martín , Brian White
{"title":"平均曲率流的平移环面","authors":"David Hoffman ,&nbsp;Francisco Martín ,&nbsp;Brian White","doi":"10.1016/j.aim.2024.109875","DOIUrl":null,"url":null,"abstract":"<div><p>We construct a family <span><math><mi>A</mi></math></span> of complete, properly embedded, annular translators <em>M</em> such that <em>M</em> lies in a slab and is invariant under reflections in the vertical coordinate planes. For each <em>M</em> in <span><math><mi>A</mi></math></span>, <em>M</em> is asymptotic as <span><math><mi>z</mi><mo>→</mo><mo>−</mo><mo>∞</mo></math></span> to four vertical planes <span><math><mo>{</mo><mi>y</mi><mo>=</mo><mo>±</mo><mi>b</mi><mo>}</mo></math></span> and <span><math><mo>{</mo><mi>y</mi><mo>=</mo><mo>±</mo><mi>B</mi><mo>}</mo></math></span> where <span><math><mn>0</mn><mo>&lt;</mo><mi>b</mi><mo>≤</mo><mi>B</mi><mo>&lt;</mo><mo>∞</mo></math></span>. We call <em>b</em> and <em>B</em> the <strong>inner width</strong> and the <strong>(outer) width</strong> of <em>M</em>. We show that for each <span><math><mi>b</mi><mo>≥</mo><mi>π</mi><mo>/</mo><mn>2</mn></math></span> and each <span><math><mi>s</mi><mo>&gt;</mo><mn>0</mn></math></span>, there is an <span><math><mi>M</mi><mo>∈</mo><mi>A</mi></math></span> with inner width <em>b</em> and with necksize <em>s</em>. (We also show that there are no translators with inner width <span><math><mo>&lt;</mo><mi>π</mi><mo>/</mo><mn>2</mn></math></span> having the properties of the examples we construct.)</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"455 ","pages":"Article 109875"},"PeriodicalIF":1.5000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Translating annuli for mean curvature flow\",\"authors\":\"David Hoffman ,&nbsp;Francisco Martín ,&nbsp;Brian White\",\"doi\":\"10.1016/j.aim.2024.109875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We construct a family <span><math><mi>A</mi></math></span> of complete, properly embedded, annular translators <em>M</em> such that <em>M</em> lies in a slab and is invariant under reflections in the vertical coordinate planes. For each <em>M</em> in <span><math><mi>A</mi></math></span>, <em>M</em> is asymptotic as <span><math><mi>z</mi><mo>→</mo><mo>−</mo><mo>∞</mo></math></span> to four vertical planes <span><math><mo>{</mo><mi>y</mi><mo>=</mo><mo>±</mo><mi>b</mi><mo>}</mo></math></span> and <span><math><mo>{</mo><mi>y</mi><mo>=</mo><mo>±</mo><mi>B</mi><mo>}</mo></math></span> where <span><math><mn>0</mn><mo>&lt;</mo><mi>b</mi><mo>≤</mo><mi>B</mi><mo>&lt;</mo><mo>∞</mo></math></span>. We call <em>b</em> and <em>B</em> the <strong>inner width</strong> and the <strong>(outer) width</strong> of <em>M</em>. We show that for each <span><math><mi>b</mi><mo>≥</mo><mi>π</mi><mo>/</mo><mn>2</mn></math></span> and each <span><math><mi>s</mi><mo>&gt;</mo><mn>0</mn></math></span>, there is an <span><math><mi>M</mi><mo>∈</mo><mi>A</mi></math></span> with inner width <em>b</em> and with necksize <em>s</em>. (We also show that there are no translators with inner width <span><math><mo>&lt;</mo><mi>π</mi><mo>/</mo><mn>2</mn></math></span> having the properties of the examples we construct.)</p></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"455 \",\"pages\":\"Article 109875\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824003906\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824003906","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们构建了一个由完整的、适当嵌入的环形平移器 M 组成的族 A,使得 M 位于板坯中,并且在垂直坐标平面的反射下保持不变。对于 A 中的每个 M,M 在 z→-∞ 时渐近于四个垂直平面 {y=±b} 和 {y=±B} ,其中 0<b≤B<∞。我们称 b 和 B 为 M 的内宽和(外)宽。我们将证明,对于每个 b≥π/2 和每个 s>0,都存在一个内宽为 b、颈长为 s 的 M∈A(我们还将证明,不存在内宽为 <π/2 的平移器,其性质与我们构建的示例相同)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Translating annuli for mean curvature flow

We construct a family A of complete, properly embedded, annular translators M such that M lies in a slab and is invariant under reflections in the vertical coordinate planes. For each M in A, M is asymptotic as z to four vertical planes {y=±b} and {y=±B} where 0<bB<. We call b and B the inner width and the (outer) width of M. We show that for each bπ/2 and each s>0, there is an MA with inner width b and with necksize s. (We also show that there are no translators with inner width <π/2 having the properties of the examples we construct.)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信