{"title":"平均曲率流的平移环面","authors":"David Hoffman , Francisco Martín , Brian White","doi":"10.1016/j.aim.2024.109875","DOIUrl":null,"url":null,"abstract":"<div><p>We construct a family <span><math><mi>A</mi></math></span> of complete, properly embedded, annular translators <em>M</em> such that <em>M</em> lies in a slab and is invariant under reflections in the vertical coordinate planes. For each <em>M</em> in <span><math><mi>A</mi></math></span>, <em>M</em> is asymptotic as <span><math><mi>z</mi><mo>→</mo><mo>−</mo><mo>∞</mo></math></span> to four vertical planes <span><math><mo>{</mo><mi>y</mi><mo>=</mo><mo>±</mo><mi>b</mi><mo>}</mo></math></span> and <span><math><mo>{</mo><mi>y</mi><mo>=</mo><mo>±</mo><mi>B</mi><mo>}</mo></math></span> where <span><math><mn>0</mn><mo><</mo><mi>b</mi><mo>≤</mo><mi>B</mi><mo><</mo><mo>∞</mo></math></span>. We call <em>b</em> and <em>B</em> the <strong>inner width</strong> and the <strong>(outer) width</strong> of <em>M</em>. We show that for each <span><math><mi>b</mi><mo>≥</mo><mi>π</mi><mo>/</mo><mn>2</mn></math></span> and each <span><math><mi>s</mi><mo>></mo><mn>0</mn></math></span>, there is an <span><math><mi>M</mi><mo>∈</mo><mi>A</mi></math></span> with inner width <em>b</em> and with necksize <em>s</em>. (We also show that there are no translators with inner width <span><math><mo><</mo><mi>π</mi><mo>/</mo><mn>2</mn></math></span> having the properties of the examples we construct.)</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"455 ","pages":"Article 109875"},"PeriodicalIF":1.5000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Translating annuli for mean curvature flow\",\"authors\":\"David Hoffman , Francisco Martín , Brian White\",\"doi\":\"10.1016/j.aim.2024.109875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We construct a family <span><math><mi>A</mi></math></span> of complete, properly embedded, annular translators <em>M</em> such that <em>M</em> lies in a slab and is invariant under reflections in the vertical coordinate planes. For each <em>M</em> in <span><math><mi>A</mi></math></span>, <em>M</em> is asymptotic as <span><math><mi>z</mi><mo>→</mo><mo>−</mo><mo>∞</mo></math></span> to four vertical planes <span><math><mo>{</mo><mi>y</mi><mo>=</mo><mo>±</mo><mi>b</mi><mo>}</mo></math></span> and <span><math><mo>{</mo><mi>y</mi><mo>=</mo><mo>±</mo><mi>B</mi><mo>}</mo></math></span> where <span><math><mn>0</mn><mo><</mo><mi>b</mi><mo>≤</mo><mi>B</mi><mo><</mo><mo>∞</mo></math></span>. We call <em>b</em> and <em>B</em> the <strong>inner width</strong> and the <strong>(outer) width</strong> of <em>M</em>. We show that for each <span><math><mi>b</mi><mo>≥</mo><mi>π</mi><mo>/</mo><mn>2</mn></math></span> and each <span><math><mi>s</mi><mo>></mo><mn>0</mn></math></span>, there is an <span><math><mi>M</mi><mo>∈</mo><mi>A</mi></math></span> with inner width <em>b</em> and with necksize <em>s</em>. (We also show that there are no translators with inner width <span><math><mo><</mo><mi>π</mi><mo>/</mo><mn>2</mn></math></span> having the properties of the examples we construct.)</p></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"455 \",\"pages\":\"Article 109875\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824003906\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824003906","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们构建了一个由完整的、适当嵌入的环形平移器 M 组成的族 A,使得 M 位于板坯中,并且在垂直坐标平面的反射下保持不变。对于 A 中的每个 M,M 在 z→-∞ 时渐近于四个垂直平面 {y=±b} 和 {y=±B} ,其中 0<b≤B<∞。我们称 b 和 B 为 M 的内宽和(外)宽。我们将证明,对于每个 b≥π/2 和每个 s>0,都存在一个内宽为 b、颈长为 s 的 M∈A(我们还将证明,不存在内宽为 <π/2 的平移器,其性质与我们构建的示例相同)。
We construct a family of complete, properly embedded, annular translators M such that M lies in a slab and is invariant under reflections in the vertical coordinate planes. For each M in , M is asymptotic as to four vertical planes and where . We call b and B the inner width and the (outer) width of M. We show that for each and each , there is an with inner width b and with necksize s. (We also show that there are no translators with inner width having the properties of the examples we construct.)
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.