利用整数编程实现机器人移动履行系统的高效路由:滚动视野和启发式方法

IF 9.1 1区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
I-Lin Wang, Tsung-Han Wang
{"title":"利用整数编程实现机器人移动履行系统的高效路由:滚动视野和启发式方法","authors":"I-Lin Wang,&nbsp;Tsung-Han Wang","doi":"10.1016/j.rcim.2024.102849","DOIUrl":null,"url":null,"abstract":"<div><p>This paper addresses an integrated rack assignment and robot routing problem arising in robotic movable fulfillment systems (RMFS). This NP-hard planning task goes beyond current literature by simultaneously optimizing movable rack selection and multi-agent collision-free path finding, rather than decomposing them. A mixed integer programming (MIP) model with a new level-space-time network representation is proposed, jointly considering reusable racks, robot-rack pairings, storage repositioning, and collision avoidance. To improve computational efficiency, a fast rolling horizon heuristic and greedy algorithm are developed. Extensive experiments demonstrate that the integrated method's solutions can improve by 30 % upon conventional decomposed approaches. Intriguing test cases reveal the model, suggesting non-intuitive robot carryover policies that are unfound by separate selection and routing methods. This indicates potential optimization benefits from explicitly coordinating task assignment, scheduling, and routing decisions in complex automated warehousing systems. The rolling horizon heuristic solutions approach optimality with much greater efficiency than directly solving one large MIP, validating its practical value. This research provides useful integrated modeling insights, efficient solution algorithms, and decision support for efficiently controlling next-generation robotic movable fulfillment systems.</p></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"91 ","pages":"Article 102849"},"PeriodicalIF":9.1000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient routing in robotic movable fulfillment systems with integer programming: A rolling horizon and heuristic approach\",\"authors\":\"I-Lin Wang,&nbsp;Tsung-Han Wang\",\"doi\":\"10.1016/j.rcim.2024.102849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper addresses an integrated rack assignment and robot routing problem arising in robotic movable fulfillment systems (RMFS). This NP-hard planning task goes beyond current literature by simultaneously optimizing movable rack selection and multi-agent collision-free path finding, rather than decomposing them. A mixed integer programming (MIP) model with a new level-space-time network representation is proposed, jointly considering reusable racks, robot-rack pairings, storage repositioning, and collision avoidance. To improve computational efficiency, a fast rolling horizon heuristic and greedy algorithm are developed. Extensive experiments demonstrate that the integrated method's solutions can improve by 30 % upon conventional decomposed approaches. Intriguing test cases reveal the model, suggesting non-intuitive robot carryover policies that are unfound by separate selection and routing methods. This indicates potential optimization benefits from explicitly coordinating task assignment, scheduling, and routing decisions in complex automated warehousing systems. The rolling horizon heuristic solutions approach optimality with much greater efficiency than directly solving one large MIP, validating its practical value. This research provides useful integrated modeling insights, efficient solution algorithms, and decision support for efficiently controlling next-generation robotic movable fulfillment systems.</p></div>\",\"PeriodicalId\":21452,\"journal\":{\"name\":\"Robotics and Computer-integrated Manufacturing\",\"volume\":\"91 \",\"pages\":\"Article 102849\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics and Computer-integrated Manufacturing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0736584524001364\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Computer-integrated Manufacturing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0736584524001364","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了机器人可移动履行系统(RMFS)中出现的机架分配和机器人路由综合问题。通过同时优化可移动货架选择和多机器人无碰撞路径搜索,而不是将它们分解,这一 NP 难度的规划任务超越了现有文献。我们提出了一个混合整数编程(MIP)模型,该模型采用了新的时空网络表示法,同时考虑了可重复使用货架、机器人与货架配对、存储重新定位和避免碰撞等问题。为了提高计算效率,还开发了快速滚动地平线启发式和贪婪算法。大量实验证明,综合方法的解决方案比传统的分解方法提高了 30%。引人入胜的测试案例揭示了这一模型,提出了非直观的机器人搬运策略,这些策略是单独的选择和路由方法所无法找到的。这表明,在复杂的自动化仓储系统中,明确协调任务分配、调度和路由决策具有潜在的优化优势。与直接求解一个大型 MIP 相比,滚动地平线启发式解决方案以更高的效率接近最优,验证了其实用价值。这项研究为有效控制下一代机器人移动履行系统提供了有用的综合建模见解、高效的求解算法和决策支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient routing in robotic movable fulfillment systems with integer programming: A rolling horizon and heuristic approach

This paper addresses an integrated rack assignment and robot routing problem arising in robotic movable fulfillment systems (RMFS). This NP-hard planning task goes beyond current literature by simultaneously optimizing movable rack selection and multi-agent collision-free path finding, rather than decomposing them. A mixed integer programming (MIP) model with a new level-space-time network representation is proposed, jointly considering reusable racks, robot-rack pairings, storage repositioning, and collision avoidance. To improve computational efficiency, a fast rolling horizon heuristic and greedy algorithm are developed. Extensive experiments demonstrate that the integrated method's solutions can improve by 30 % upon conventional decomposed approaches. Intriguing test cases reveal the model, suggesting non-intuitive robot carryover policies that are unfound by separate selection and routing methods. This indicates potential optimization benefits from explicitly coordinating task assignment, scheduling, and routing decisions in complex automated warehousing systems. The rolling horizon heuristic solutions approach optimality with much greater efficiency than directly solving one large MIP, validating its practical value. This research provides useful integrated modeling insights, efficient solution algorithms, and decision support for efficiently controlling next-generation robotic movable fulfillment systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Robotics and Computer-integrated Manufacturing
Robotics and Computer-integrated Manufacturing 工程技术-工程:制造
CiteScore
24.10
自引率
13.50%
发文量
160
审稿时长
50 days
期刊介绍: The journal, Robotics and Computer-Integrated Manufacturing, focuses on sharing research applications that contribute to the development of new or enhanced robotics, manufacturing technologies, and innovative manufacturing strategies that are relevant to industry. Papers that combine theory and experimental validation are preferred, while review papers on current robotics and manufacturing issues are also considered. However, papers on traditional machining processes, modeling and simulation, supply chain management, and resource optimization are generally not within the scope of the journal, as there are more appropriate journals for these topics. Similarly, papers that are overly theoretical or mathematical will be directed to other suitable journals. The journal welcomes original papers in areas such as industrial robotics, human-robot collaboration in manufacturing, cloud-based manufacturing, cyber-physical production systems, big data analytics in manufacturing, smart mechatronics, machine learning, adaptive and sustainable manufacturing, and other fields involving unique manufacturing technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信