{"title":"采用高阶紧凑差分方案的新型快速二阶方法及其对回火分数布尔格斯方程的分析","authors":"Himanshu Kumar Dwivedi, Rajeev","doi":"10.1016/j.matcom.2024.08.003","DOIUrl":null,"url":null,"abstract":"<div><p>This research focuses on devising a new fast difference scheme to simulate the Caputo tempered fractional derivative (TFD). We introduce a fast tempered <span><math><mrow><msup><mrow></mrow><mrow><mi>λ</mi></mrow></msup><mi>F</mi><mi>£</mi><mn>2</mn><mo>−</mo><mn>1</mn><mi>σ</mi></mrow></math></span> difference method featuring second-order precision for a tempered time fractional Burgers equation (TFBE) with tempered parameter <span><math><mi>λ</mi></math></span> and fractional derivative of order <span><math><mi>α</mi></math></span> (<span><math><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo><</mo><mn>1</mn></mrow></math></span>). The model emerges in characterizing the propagation of waves in porous material with the power law kernel and exponential attenuation. To circumvent iteratively resolving the discretized algebraic system, we introduce a linearized difference operator for approximating the nonlinear terms appearing in the model. The second-order fast tempered scheme relies on the sum of exponents (SOE) technique. The method’s convergence and stability are analyzed theoretically, establishing unconditional stability and maintaining the accuracy of order <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>ϵ</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>τ</mi></math></span> denotes the temporal step size, <span><math><mi>ϵ</mi></math></span> is the tolerance error and <span><math><mi>h</mi></math></span> is the spatial step size. Moreover, a novel compact finite difference (CFD) scheme of high order is developed for tempered TFBE. We investigate the stability and convergence of this fourth-order compact scheme utilizing the energy method. Numerical simulations indicate convergence to <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>+</mo><mi>ϵ</mi><mo>)</mo></mrow></mrow></math></span> under robust regularity assumptions. Our computational results align with theoretical analysis, demonstrating good accuracy while reducing computational complexity and storage needs compared to the standard tempered <span><math><mrow><msup><mrow></mrow><mrow><mi>λ</mi></mrow></msup><mi>£</mi><mn>2</mn><mo>−</mo><mn>1</mn><mi>σ</mi></mrow></math></span> scheme, with significant reduction in CPU time. Numerical outcomes showcase the competitive performance of the fast tempered <span><math><mrow><msup><mrow></mrow><mrow><mi>λ</mi></mrow></msup><mi>F</mi><mi>£</mi><mn>2</mn><mo>−</mo><mn>1</mn><mi>σ</mi></mrow></math></span> scheme relative to the standard <span><math><mrow><msup><mrow></mrow><mrow><mi>λ</mi></mrow></msup><mi>£</mi><mn>2</mn><mo>−</mo><mn>1</mn><mi>σ</mi></mrow></math></span>.</p></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"227 ","pages":"Pages 168-188"},"PeriodicalIF":4.4000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel fast second order approach with high-order compact difference scheme and its analysis for the tempered fractional Burgers equation\",\"authors\":\"Himanshu Kumar Dwivedi, Rajeev\",\"doi\":\"10.1016/j.matcom.2024.08.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research focuses on devising a new fast difference scheme to simulate the Caputo tempered fractional derivative (TFD). We introduce a fast tempered <span><math><mrow><msup><mrow></mrow><mrow><mi>λ</mi></mrow></msup><mi>F</mi><mi>£</mi><mn>2</mn><mo>−</mo><mn>1</mn><mi>σ</mi></mrow></math></span> difference method featuring second-order precision for a tempered time fractional Burgers equation (TFBE) with tempered parameter <span><math><mi>λ</mi></math></span> and fractional derivative of order <span><math><mi>α</mi></math></span> (<span><math><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo><</mo><mn>1</mn></mrow></math></span>). The model emerges in characterizing the propagation of waves in porous material with the power law kernel and exponential attenuation. To circumvent iteratively resolving the discretized algebraic system, we introduce a linearized difference operator for approximating the nonlinear terms appearing in the model. The second-order fast tempered scheme relies on the sum of exponents (SOE) technique. The method’s convergence and stability are analyzed theoretically, establishing unconditional stability and maintaining the accuracy of order <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>ϵ</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>τ</mi></math></span> denotes the temporal step size, <span><math><mi>ϵ</mi></math></span> is the tolerance error and <span><math><mi>h</mi></math></span> is the spatial step size. Moreover, a novel compact finite difference (CFD) scheme of high order is developed for tempered TFBE. We investigate the stability and convergence of this fourth-order compact scheme utilizing the energy method. Numerical simulations indicate convergence to <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>+</mo><mi>ϵ</mi><mo>)</mo></mrow></mrow></math></span> under robust regularity assumptions. Our computational results align with theoretical analysis, demonstrating good accuracy while reducing computational complexity and storage needs compared to the standard tempered <span><math><mrow><msup><mrow></mrow><mrow><mi>λ</mi></mrow></msup><mi>£</mi><mn>2</mn><mo>−</mo><mn>1</mn><mi>σ</mi></mrow></math></span> scheme, with significant reduction in CPU time. Numerical outcomes showcase the competitive performance of the fast tempered <span><math><mrow><msup><mrow></mrow><mrow><mi>λ</mi></mrow></msup><mi>F</mi><mi>£</mi><mn>2</mn><mo>−</mo><mn>1</mn><mi>σ</mi></mrow></math></span> scheme relative to the standard <span><math><mrow><msup><mrow></mrow><mrow><mi>λ</mi></mrow></msup><mi>£</mi><mn>2</mn><mo>−</mo><mn>1</mn><mi>σ</mi></mrow></math></span>.</p></div>\",\"PeriodicalId\":49856,\"journal\":{\"name\":\"Mathematics and Computers in Simulation\",\"volume\":\"227 \",\"pages\":\"Pages 168-188\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Computers in Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378475424003057\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424003057","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A novel fast second order approach with high-order compact difference scheme and its analysis for the tempered fractional Burgers equation
This research focuses on devising a new fast difference scheme to simulate the Caputo tempered fractional derivative (TFD). We introduce a fast tempered difference method featuring second-order precision for a tempered time fractional Burgers equation (TFBE) with tempered parameter and fractional derivative of order (). The model emerges in characterizing the propagation of waves in porous material with the power law kernel and exponential attenuation. To circumvent iteratively resolving the discretized algebraic system, we introduce a linearized difference operator for approximating the nonlinear terms appearing in the model. The second-order fast tempered scheme relies on the sum of exponents (SOE) technique. The method’s convergence and stability are analyzed theoretically, establishing unconditional stability and maintaining the accuracy of order , where denotes the temporal step size, is the tolerance error and is the spatial step size. Moreover, a novel compact finite difference (CFD) scheme of high order is developed for tempered TFBE. We investigate the stability and convergence of this fourth-order compact scheme utilizing the energy method. Numerical simulations indicate convergence to under robust regularity assumptions. Our computational results align with theoretical analysis, demonstrating good accuracy while reducing computational complexity and storage needs compared to the standard tempered scheme, with significant reduction in CPU time. Numerical outcomes showcase the competitive performance of the fast tempered scheme relative to the standard .
期刊介绍:
The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles.
Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO.
Topics covered by the journal include mathematical tools in:
•The foundations of systems modelling
•Numerical analysis and the development of algorithms for simulation
They also include considerations about computer hardware for simulation and about special software and compilers.
The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research.
The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.