采用高阶紧凑差分方案的新型快速二阶方法及其对回火分数布尔格斯方程的分析

IF 4.4 2区 数学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Himanshu Kumar Dwivedi, Rajeev
{"title":"采用高阶紧凑差分方案的新型快速二阶方法及其对回火分数布尔格斯方程的分析","authors":"Himanshu Kumar Dwivedi,&nbsp;Rajeev","doi":"10.1016/j.matcom.2024.08.003","DOIUrl":null,"url":null,"abstract":"<div><p>This research focuses on devising a new fast difference scheme to simulate the Caputo tempered fractional derivative (TFD). We introduce a fast tempered <span><math><mrow><msup><mrow></mrow><mrow><mi>λ</mi></mrow></msup><mi>F</mi><mi>£</mi><mn>2</mn><mo>−</mo><mn>1</mn><mi>σ</mi></mrow></math></span> difference method featuring second-order precision for a tempered time fractional Burgers equation (TFBE) with tempered parameter <span><math><mi>λ</mi></math></span> and fractional derivative of order <span><math><mi>α</mi></math></span> (<span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span>). The model emerges in characterizing the propagation of waves in porous material with the power law kernel and exponential attenuation. To circumvent iteratively resolving the discretized algebraic system, we introduce a linearized difference operator for approximating the nonlinear terms appearing in the model. The second-order fast tempered scheme relies on the sum of exponents (SOE) technique. The method’s convergence and stability are analyzed theoretically, establishing unconditional stability and maintaining the accuracy of order <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>ϵ</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>τ</mi></math></span> denotes the temporal step size, <span><math><mi>ϵ</mi></math></span> is the tolerance error and <span><math><mi>h</mi></math></span> is the spatial step size. Moreover, a novel compact finite difference (CFD) scheme of high order is developed for tempered TFBE. We investigate the stability and convergence of this fourth-order compact scheme utilizing the energy method. Numerical simulations indicate convergence to <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>+</mo><mi>ϵ</mi><mo>)</mo></mrow></mrow></math></span> under robust regularity assumptions. Our computational results align with theoretical analysis, demonstrating good accuracy while reducing computational complexity and storage needs compared to the standard tempered <span><math><mrow><msup><mrow></mrow><mrow><mi>λ</mi></mrow></msup><mi>£</mi><mn>2</mn><mo>−</mo><mn>1</mn><mi>σ</mi></mrow></math></span> scheme, with significant reduction in CPU time. Numerical outcomes showcase the competitive performance of the fast tempered <span><math><mrow><msup><mrow></mrow><mrow><mi>λ</mi></mrow></msup><mi>F</mi><mi>£</mi><mn>2</mn><mo>−</mo><mn>1</mn><mi>σ</mi></mrow></math></span> scheme relative to the standard <span><math><mrow><msup><mrow></mrow><mrow><mi>λ</mi></mrow></msup><mi>£</mi><mn>2</mn><mo>−</mo><mn>1</mn><mi>σ</mi></mrow></math></span>.</p></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"227 ","pages":"Pages 168-188"},"PeriodicalIF":4.4000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel fast second order approach with high-order compact difference scheme and its analysis for the tempered fractional Burgers equation\",\"authors\":\"Himanshu Kumar Dwivedi,&nbsp;Rajeev\",\"doi\":\"10.1016/j.matcom.2024.08.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research focuses on devising a new fast difference scheme to simulate the Caputo tempered fractional derivative (TFD). We introduce a fast tempered <span><math><mrow><msup><mrow></mrow><mrow><mi>λ</mi></mrow></msup><mi>F</mi><mi>£</mi><mn>2</mn><mo>−</mo><mn>1</mn><mi>σ</mi></mrow></math></span> difference method featuring second-order precision for a tempered time fractional Burgers equation (TFBE) with tempered parameter <span><math><mi>λ</mi></math></span> and fractional derivative of order <span><math><mi>α</mi></math></span> (<span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span>). The model emerges in characterizing the propagation of waves in porous material with the power law kernel and exponential attenuation. To circumvent iteratively resolving the discretized algebraic system, we introduce a linearized difference operator for approximating the nonlinear terms appearing in the model. The second-order fast tempered scheme relies on the sum of exponents (SOE) technique. The method’s convergence and stability are analyzed theoretically, establishing unconditional stability and maintaining the accuracy of order <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>ϵ</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>τ</mi></math></span> denotes the temporal step size, <span><math><mi>ϵ</mi></math></span> is the tolerance error and <span><math><mi>h</mi></math></span> is the spatial step size. Moreover, a novel compact finite difference (CFD) scheme of high order is developed for tempered TFBE. We investigate the stability and convergence of this fourth-order compact scheme utilizing the energy method. Numerical simulations indicate convergence to <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>+</mo><mi>ϵ</mi><mo>)</mo></mrow></mrow></math></span> under robust regularity assumptions. Our computational results align with theoretical analysis, demonstrating good accuracy while reducing computational complexity and storage needs compared to the standard tempered <span><math><mrow><msup><mrow></mrow><mrow><mi>λ</mi></mrow></msup><mi>£</mi><mn>2</mn><mo>−</mo><mn>1</mn><mi>σ</mi></mrow></math></span> scheme, with significant reduction in CPU time. Numerical outcomes showcase the competitive performance of the fast tempered <span><math><mrow><msup><mrow></mrow><mrow><mi>λ</mi></mrow></msup><mi>F</mi><mi>£</mi><mn>2</mn><mo>−</mo><mn>1</mn><mi>σ</mi></mrow></math></span> scheme relative to the standard <span><math><mrow><msup><mrow></mrow><mrow><mi>λ</mi></mrow></msup><mi>£</mi><mn>2</mn><mo>−</mo><mn>1</mn><mi>σ</mi></mrow></math></span>.</p></div>\",\"PeriodicalId\":49856,\"journal\":{\"name\":\"Mathematics and Computers in Simulation\",\"volume\":\"227 \",\"pages\":\"Pages 168-188\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Computers in Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378475424003057\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424003057","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本研究的重点是设计一种新的快速差分方案来模拟卡普托节制分数导数(TFD)。我们介绍了一种具有二阶精度的快速回火λF£2-1σ差分法,用于具有回火参数λ和分数导数α阶(0<α<1)的回火时间分数伯格斯方程(TFBE)。该模型以幂律核和指数衰减来描述波在多孔材料中的传播。为了避免对离散代数系统进行迭代求解,我们引入了线性化差分算子来逼近模型中出现的非线性项。二阶快速调节方案依赖于指数和(SOE)技术。对该方法的收敛性和稳定性进行了理论分析,建立了无条件稳定性,并保持了 O(τ2+h2+ϵ)的精度,其中 τ 表示时间步长,ϵ 是容许误差,h 是空间步长。此外,我们还为钢化 TFBE 开发了一种新颖的高阶紧凑有限差分(CFD)方案。我们利用能量法研究了这种四阶紧凑方案的稳定性和收敛性。数值模拟表明,在稳健的正则假设条件下,收敛性达到 O(τ2+h4+ϵ)。我们的计算结果与理论分析相一致,与标准节制λ£2-1σ 方案相比,我们的计算结果在降低计算复杂度和存储需求的同时,还展示了良好的准确性,并显著减少了 CPU 时间。数值结果表明,相对于标准λ£2-1σ方案,快速回火λF£2-1σ方案的性能极具竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel fast second order approach with high-order compact difference scheme and its analysis for the tempered fractional Burgers equation

This research focuses on devising a new fast difference scheme to simulate the Caputo tempered fractional derivative (TFD). We introduce a fast tempered λF£21σ difference method featuring second-order precision for a tempered time fractional Burgers equation (TFBE) with tempered parameter λ and fractional derivative of order α (0<α<1). The model emerges in characterizing the propagation of waves in porous material with the power law kernel and exponential attenuation. To circumvent iteratively resolving the discretized algebraic system, we introduce a linearized difference operator for approximating the nonlinear terms appearing in the model. The second-order fast tempered scheme relies on the sum of exponents (SOE) technique. The method’s convergence and stability are analyzed theoretically, establishing unconditional stability and maintaining the accuracy of order O(τ2+h2+ϵ), where τ denotes the temporal step size, ϵ is the tolerance error and h is the spatial step size. Moreover, a novel compact finite difference (CFD) scheme of high order is developed for tempered TFBE. We investigate the stability and convergence of this fourth-order compact scheme utilizing the energy method. Numerical simulations indicate convergence to O(τ2+h4+ϵ) under robust regularity assumptions. Our computational results align with theoretical analysis, demonstrating good accuracy while reducing computational complexity and storage needs compared to the standard tempered λ£21σ scheme, with significant reduction in CPU time. Numerical outcomes showcase the competitive performance of the fast tempered λF£21σ scheme relative to the standard λ£21σ.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics and Computers in Simulation
Mathematics and Computers in Simulation 数学-计算机:跨学科应用
CiteScore
8.90
自引率
4.30%
发文量
335
审稿时长
54 days
期刊介绍: The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles. Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO. Topics covered by the journal include mathematical tools in: •The foundations of systems modelling •Numerical analysis and the development of algorithms for simulation They also include considerations about computer hardware for simulation and about special software and compilers. The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research. The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信