肠道 Akkermansia muciniphila 对缺血性中风后的功能恢复有益

IF 6.2
Kemin Li, Wancong Ding, Xinrui Li, Hao Gao, Shuang Wang, Ting Li, Haiyu Zhao, Shengxiang Zhang
{"title":"肠道 Akkermansia muciniphila 对缺血性中风后的功能恢复有益","authors":"Kemin Li, Wancong Ding, Xinrui Li, Hao Gao, Shuang Wang, Ting Li, Haiyu Zhao, Shengxiang Zhang","doi":"10.1007/s11481-024-10146-6","DOIUrl":null,"url":null,"abstract":"<p><p>Recent studies have demonstrated the interaction between gut microbiota and brain on ischemic stroke, but the roles of gut microbiota in the pathophysiology of ischemic stroke remain largely unclear. In this study, we detected a significant increase of intestinal Akkermansia muciniphila (AKK) following ischemic stroke by a rose bengal photothrombosis model. To investigate the function and mechanism of AKK on ischemic stroke, we performed the AKK administration prior to stroke surgery. The results showed that mice treated with AKK gained significantly higher body weight and behaved better than those in PBS group at 3 days after ischemic stroke. Consistently, AKK administration remarkably decreased the infarct volumes as well as the density of degenerating neurons and apoptotic cells after ischemic stroke. Notably, AKK is a potential therapeutic target in immune-related disorders connected to the microbiota, and inflammation is crucially involved in the pathophysiological process of ischemic stroke. For the determination of underlying mechanisms of this protective effect, we investigated whether there are associations between AKK and neuroinflammation following ischemic stroke. The results suggested that AKK administration significantly reduced the activation of astrocytes and microglia but up-regulated multiple anti-inflammatory factors following ischemic stroke. Therefore, our study highlighted the beneficial roles of intestinal AKK on ischemic stroke and provided a new perspective for the treatment of ischemic stroke.</p>","PeriodicalId":73858,"journal":{"name":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","volume":"19 1","pages":"43"},"PeriodicalIF":6.2000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intestinal Akkermansia muciniphila is Beneficial to Functional Recovery Following Ischemic Stroke.\",\"authors\":\"Kemin Li, Wancong Ding, Xinrui Li, Hao Gao, Shuang Wang, Ting Li, Haiyu Zhao, Shengxiang Zhang\",\"doi\":\"10.1007/s11481-024-10146-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent studies have demonstrated the interaction between gut microbiota and brain on ischemic stroke, but the roles of gut microbiota in the pathophysiology of ischemic stroke remain largely unclear. In this study, we detected a significant increase of intestinal Akkermansia muciniphila (AKK) following ischemic stroke by a rose bengal photothrombosis model. To investigate the function and mechanism of AKK on ischemic stroke, we performed the AKK administration prior to stroke surgery. The results showed that mice treated with AKK gained significantly higher body weight and behaved better than those in PBS group at 3 days after ischemic stroke. Consistently, AKK administration remarkably decreased the infarct volumes as well as the density of degenerating neurons and apoptotic cells after ischemic stroke. Notably, AKK is a potential therapeutic target in immune-related disorders connected to the microbiota, and inflammation is crucially involved in the pathophysiological process of ischemic stroke. For the determination of underlying mechanisms of this protective effect, we investigated whether there are associations between AKK and neuroinflammation following ischemic stroke. The results suggested that AKK administration significantly reduced the activation of astrocytes and microglia but up-regulated multiple anti-inflammatory factors following ischemic stroke. Therefore, our study highlighted the beneficial roles of intestinal AKK on ischemic stroke and provided a new perspective for the treatment of ischemic stroke.</p>\",\"PeriodicalId\":73858,\"journal\":{\"name\":\"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology\",\"volume\":\"19 1\",\"pages\":\"43\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11481-024-10146-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11481-024-10146-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近的研究表明,肠道微生物群与缺血性脑卒中的大脑之间存在相互作用,但肠道微生物群在缺血性脑卒中病理生理学中的作用在很大程度上仍不清楚。在本研究中,我们通过玫瑰红光栓模型检测到缺血性脑卒中后肠道Akkermansia muciniphila(AKK)显著增加。为了研究 AKK 对缺血性中风的作用和机制,我们在中风手术前给小鼠服用了 AKK。结果显示,缺血性脑卒中术后3天,AKK组小鼠体重明显增加,表现优于PBS组小鼠。一致的是,AKK能显著减少缺血性脑卒中后的梗死体积以及退化神经元和凋亡细胞的密度。值得注意的是,AKK 是与微生物群相关的免疫相关疾病的潜在治疗靶点,而炎症在缺血性中风的病理生理过程中起着至关重要的作用。为了确定这种保护作用的潜在机制,我们研究了缺血性中风后 AKK 与神经炎症之间是否存在关联。结果表明,服用 AKK 能显著降低缺血性脑卒中后星形胶质细胞和小胶质细胞的活化,同时上调多种抗炎因子。因此,我们的研究强调了肠道 AKK 对缺血性脑卒中的有益作用,并为缺血性脑卒中的治疗提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Intestinal Akkermansia muciniphila is Beneficial to Functional Recovery Following Ischemic Stroke.

Intestinal Akkermansia muciniphila is Beneficial to Functional Recovery Following Ischemic Stroke.

Recent studies have demonstrated the interaction between gut microbiota and brain on ischemic stroke, but the roles of gut microbiota in the pathophysiology of ischemic stroke remain largely unclear. In this study, we detected a significant increase of intestinal Akkermansia muciniphila (AKK) following ischemic stroke by a rose bengal photothrombosis model. To investigate the function and mechanism of AKK on ischemic stroke, we performed the AKK administration prior to stroke surgery. The results showed that mice treated with AKK gained significantly higher body weight and behaved better than those in PBS group at 3 days after ischemic stroke. Consistently, AKK administration remarkably decreased the infarct volumes as well as the density of degenerating neurons and apoptotic cells after ischemic stroke. Notably, AKK is a potential therapeutic target in immune-related disorders connected to the microbiota, and inflammation is crucially involved in the pathophysiological process of ischemic stroke. For the determination of underlying mechanisms of this protective effect, we investigated whether there are associations between AKK and neuroinflammation following ischemic stroke. The results suggested that AKK administration significantly reduced the activation of astrocytes and microglia but up-regulated multiple anti-inflammatory factors following ischemic stroke. Therefore, our study highlighted the beneficial roles of intestinal AKK on ischemic stroke and provided a new perspective for the treatment of ischemic stroke.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信