在多阶段优化战略框架中应用资源管理原则,实现社区参与和实验严谨性。

Implementation research and practice Pub Date : 2024-07-23 eCollection Date: 2024-01-01 DOI:10.1177/26334895241262822
Karey L O'Hara, Kate Guastaferro, Liza Hita, C Aubrey Rhodes, Nalani A Thomas, Sharlene A Wolchik, Cady Berkel
{"title":"在多阶段优化战略框架中应用资源管理原则,实现社区参与和实验严谨性。","authors":"Karey L O'Hara, Kate Guastaferro, Liza Hita, C Aubrey Rhodes, Nalani A Thomas, Sharlene A Wolchik, Cady Berkel","doi":"10.1177/26334895241262822","DOIUrl":null,"url":null,"abstract":"<p><p>Preventing and treating mental health and substance use problems requires effective, affordable, scalable, and efficient interventions. The multiphase optimization strategy (MOST) framework guides researchers through a phased and systematic process of developing optimized interventions. However, new methods of systematically incorporating information about implementation constraints across MOST phases are needed. We propose that early and sustained integration of community-engaged methods within MOST is a promising strategy for enhancing an optimized intervention's potential for implementation. In this article, we outline the advantages of using community-engaged methods throughout the intervention optimization process, with a focus on the Preparation and Optimization Phases of MOST. We discuss the role of experimental designs in optimization research and highlight potential challenges in conducting rigorous experiments in community settings. We then demonstrate how relying on the resource management principle to select experimental designs across MOST phases is a promising strategy for maintaining both experimental rigor and community responsiveness. We end with an applied example illustrating a community-engaged approach to optimize an intervention to reduce the risk for mental health problems and substance use problems among children with incarcerated parents.</p>","PeriodicalId":73354,"journal":{"name":"Implementation research and practice","volume":"5 ","pages":"26334895241262822"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11320397/pdf/","citationCount":"0","resultStr":"{\"title\":\"Applying the resource management principle to achieve community engagement and experimental rigor in the multiphase optimization strategy framework.\",\"authors\":\"Karey L O'Hara, Kate Guastaferro, Liza Hita, C Aubrey Rhodes, Nalani A Thomas, Sharlene A Wolchik, Cady Berkel\",\"doi\":\"10.1177/26334895241262822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Preventing and treating mental health and substance use problems requires effective, affordable, scalable, and efficient interventions. The multiphase optimization strategy (MOST) framework guides researchers through a phased and systematic process of developing optimized interventions. However, new methods of systematically incorporating information about implementation constraints across MOST phases are needed. We propose that early and sustained integration of community-engaged methods within MOST is a promising strategy for enhancing an optimized intervention's potential for implementation. In this article, we outline the advantages of using community-engaged methods throughout the intervention optimization process, with a focus on the Preparation and Optimization Phases of MOST. We discuss the role of experimental designs in optimization research and highlight potential challenges in conducting rigorous experiments in community settings. We then demonstrate how relying on the resource management principle to select experimental designs across MOST phases is a promising strategy for maintaining both experimental rigor and community responsiveness. We end with an applied example illustrating a community-engaged approach to optimize an intervention to reduce the risk for mental health problems and substance use problems among children with incarcerated parents.</p>\",\"PeriodicalId\":73354,\"journal\":{\"name\":\"Implementation research and practice\",\"volume\":\"5 \",\"pages\":\"26334895241262822\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11320397/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Implementation research and practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/26334895241262822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Implementation research and practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/26334895241262822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

预防和治疗心理健康和药物使用问题需要有效、可负担、可扩展和高效的干预措施。多阶段优化策略(MOST)框架指导研究人员分阶段系统地开发优化干预措施。然而,我们需要新的方法来系统地纳入有关多阶段优化策略各阶段实施限制因素的信息。我们提出,在社会变革管理策略中尽早并持续地融入社区参与方法,是提高优化干预措施实施潜力的一种有前途的策略。在本文中,我们概述了在整个干预优化过程中使用社区参与方法的优势,重点是社会变革管理计划的准备和优化阶段。我们讨论了实验设计在优化研究中的作用,并强调了在社区环境中进行严格实验的潜在挑战。然后,我们展示了在社会变革管理计划的各个阶段依靠资源管理原则来选择实验设计是如何保持实验严谨性和社区响应性的一种有前途的策略。最后,我们以一个应用实例说明了如何通过社区参与的方法来优化干预措施,以降低父母被监禁的儿童出现心理健康问题和药物使用问题的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applying the resource management principle to achieve community engagement and experimental rigor in the multiphase optimization strategy framework.

Preventing and treating mental health and substance use problems requires effective, affordable, scalable, and efficient interventions. The multiphase optimization strategy (MOST) framework guides researchers through a phased and systematic process of developing optimized interventions. However, new methods of systematically incorporating information about implementation constraints across MOST phases are needed. We propose that early and sustained integration of community-engaged methods within MOST is a promising strategy for enhancing an optimized intervention's potential for implementation. In this article, we outline the advantages of using community-engaged methods throughout the intervention optimization process, with a focus on the Preparation and Optimization Phases of MOST. We discuss the role of experimental designs in optimization research and highlight potential challenges in conducting rigorous experiments in community settings. We then demonstrate how relying on the resource management principle to select experimental designs across MOST phases is a promising strategy for maintaining both experimental rigor and community responsiveness. We end with an applied example illustrating a community-engaged approach to optimize an intervention to reduce the risk for mental health problems and substance use problems among children with incarcerated parents.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信