斑潜蝇唾液腺中含有高浓度植物激素:对寄主植物相互作用的影响

IF 2.2 3区 环境科学与生态学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Flor E Acevedo
{"title":"斑潜蝇唾液腺中含有高浓度植物激素:对寄主植物相互作用的影响","authors":"Flor E Acevedo","doi":"10.1007/s10886-024-01536-4","DOIUrl":null,"url":null,"abstract":"<p><p>The spotted lanternfly (SLF), Lycorma delicatula is an invasive species in the United States that has emerged as a significant pest in vineyards. This polyphagous insect causes significant damage to grapevines and tree of heaven (TOH). SLF feeds voraciously on plant tissues using its piercing and sucking mouthparts through which it injects saliva and uptakes plant sap. Despite its impact, research on fundamental mechanisms mediating SLF interactions with their predominant hosts is limited. This study documents the morphology of salivary glands and quantifies plant hormones in salivary glands of SLF adults fed on grapevines and TOH using Liquid Chromatography-Mass Spectrometry (LC/MS). SLF adults have one pair of large salivary glands, ranging from 10 to 15 mm in length that extend from the insect's head to the last sections of the abdomen. The salivary glands of SLF contain salicylic acid (89 ng/g), abscisic acid (6.5 ng/g), 12-oxo-phytodienoic acid (5.7 ng/g), indole-3-acetic acid (2 ng/g), jasmonic acid (0.6 ng/g), jasmonic acid isoleucine (0.037 ng/g), and the cytokinin ribosides trans-zeatin (0.6 ng/g) and cis-zeatin (0.1 ng/g). While the concentrations of these hormones were similar in insects fed on grapevines and TOH, abscisic acid was more abundant in insects fed on grapevines, and jasmonic acid isoleucine was only detected in insects fed on grape. These results are discussed in the context of the possible implications that these hormones may have on the regulation of plant defenses. This study contributes to our understanding of the composition of SLF saliva and its potential role in plant immunity.</p>","PeriodicalId":15346,"journal":{"name":"Journal of Chemical Ecology","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Spotted Lanternfly Contains High Concentrations of Plant Hormones in its Salivary Glands: Implications in Host Plant Interactions.\",\"authors\":\"Flor E Acevedo\",\"doi\":\"10.1007/s10886-024-01536-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The spotted lanternfly (SLF), Lycorma delicatula is an invasive species in the United States that has emerged as a significant pest in vineyards. This polyphagous insect causes significant damage to grapevines and tree of heaven (TOH). SLF feeds voraciously on plant tissues using its piercing and sucking mouthparts through which it injects saliva and uptakes plant sap. Despite its impact, research on fundamental mechanisms mediating SLF interactions with their predominant hosts is limited. This study documents the morphology of salivary glands and quantifies plant hormones in salivary glands of SLF adults fed on grapevines and TOH using Liquid Chromatography-Mass Spectrometry (LC/MS). SLF adults have one pair of large salivary glands, ranging from 10 to 15 mm in length that extend from the insect's head to the last sections of the abdomen. The salivary glands of SLF contain salicylic acid (89 ng/g), abscisic acid (6.5 ng/g), 12-oxo-phytodienoic acid (5.7 ng/g), indole-3-acetic acid (2 ng/g), jasmonic acid (0.6 ng/g), jasmonic acid isoleucine (0.037 ng/g), and the cytokinin ribosides trans-zeatin (0.6 ng/g) and cis-zeatin (0.1 ng/g). While the concentrations of these hormones were similar in insects fed on grapevines and TOH, abscisic acid was more abundant in insects fed on grapevines, and jasmonic acid isoleucine was only detected in insects fed on grape. These results are discussed in the context of the possible implications that these hormones may have on the regulation of plant defenses. This study contributes to our understanding of the composition of SLF saliva and its potential role in plant immunity.</p>\",\"PeriodicalId\":15346,\"journal\":{\"name\":\"Journal of Chemical Ecology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10886-024-01536-4\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10886-024-01536-4","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

斑灯蝇(SLF),Lycorma delicatula 是美国的一种入侵物种,已成为葡萄园中的一种重要害虫。这种多食性昆虫对葡萄藤和天堂树(TOH)造成严重危害。SLF 利用其穿刺和吸吮口器贪婪地吸食植物组织,并通过口器注入唾液和吸取植物汁液。尽管它的影响巨大,但有关 SLF 与其主要宿主相互作用的基本机制的研究却很有限。本研究记录了唾液腺的形态,并使用液相色谱-质谱联用技术(LC/MS)定量检测了以葡萄树和TOH为食的SLF成虫唾液腺中的植物激素。SLF成虫有一对大唾液腺,长度为10至15毫米,从昆虫的头部一直延伸到腹部的最后一节。SLF 的唾液腺中含有水杨酸(89 纳克/克)、脱落酸(6.5 纳克/克)、12-氧代-1,2-二烯酸(5.7 纳克/克)、吲哚-3-乙酸(2 纳克/克)、茉莉酸(0.6 纳克/克)、茉莉酸异亮氨酸(0.037 纳克/克)以及细胞分裂素核苷反式玉米素(0.6 纳克/克)和顺式玉米素(0.1 纳克/克)。虽然这些激素在喂食葡萄藤和 TOH 的昆虫中浓度相似,但在喂食葡萄藤的昆虫中赤霉酸含量更高,而茉莉酸异亮氨酸仅在喂食葡萄的昆虫中检测到。这些结果将结合这些激素对植物防御调节可能产生的影响进行讨论。这项研究有助于我们了解 SLF 唾液的组成及其在植物免疫中的潜在作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Spotted Lanternfly Contains High Concentrations of Plant Hormones in its Salivary Glands: Implications in Host Plant Interactions.

The Spotted Lanternfly Contains High Concentrations of Plant Hormones in its Salivary Glands: Implications in Host Plant Interactions.

The spotted lanternfly (SLF), Lycorma delicatula is an invasive species in the United States that has emerged as a significant pest in vineyards. This polyphagous insect causes significant damage to grapevines and tree of heaven (TOH). SLF feeds voraciously on plant tissues using its piercing and sucking mouthparts through which it injects saliva and uptakes plant sap. Despite its impact, research on fundamental mechanisms mediating SLF interactions with their predominant hosts is limited. This study documents the morphology of salivary glands and quantifies plant hormones in salivary glands of SLF adults fed on grapevines and TOH using Liquid Chromatography-Mass Spectrometry (LC/MS). SLF adults have one pair of large salivary glands, ranging from 10 to 15 mm in length that extend from the insect's head to the last sections of the abdomen. The salivary glands of SLF contain salicylic acid (89 ng/g), abscisic acid (6.5 ng/g), 12-oxo-phytodienoic acid (5.7 ng/g), indole-3-acetic acid (2 ng/g), jasmonic acid (0.6 ng/g), jasmonic acid isoleucine (0.037 ng/g), and the cytokinin ribosides trans-zeatin (0.6 ng/g) and cis-zeatin (0.1 ng/g). While the concentrations of these hormones were similar in insects fed on grapevines and TOH, abscisic acid was more abundant in insects fed on grapevines, and jasmonic acid isoleucine was only detected in insects fed on grape. These results are discussed in the context of the possible implications that these hormones may have on the regulation of plant defenses. This study contributes to our understanding of the composition of SLF saliva and its potential role in plant immunity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Ecology
Journal of Chemical Ecology 环境科学-生化与分子生物学
CiteScore
5.10
自引率
4.30%
发文量
58
审稿时长
4 months
期刊介绍: Journal of Chemical Ecology is devoted to promoting an ecological understanding of the origin, function, and significance of natural chemicals that mediate interactions within and between organisms. Such relationships, often adaptively important, comprise the oldest of communication systems in terrestrial and aquatic environments. With recent advances in methodology for elucidating structures of the chemical compounds involved, a strong interdisciplinary association has developed between chemists and biologists which should accelerate understanding of these interactions in nature. Scientific contributions, including review articles, are welcome from either members or nonmembers of the International Society of Chemical Ecology. Manuscripts must be in English and may include original research in biological and/or chemical aspects of chemical ecology. They may include substantive observations of interactions in nature, the elucidation of the chemical compounds involved, the mechanisms of their production and reception, and the translation of such basic information into survey and control protocols. Sufficient biological and chemical detail should be given to substantiate conclusions and to permit results to be evaluated and reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信