直接口服抗凝剂患者颅内出血预测模型的开发与验证。

IF 2.3 4区 医学 Q2 HEMATOLOGY
Yuanyuan Liu, Linjie Li, Jingge Li, Hangkuan Liu, A Geru, Yulong Wang, Yongle Li, Ching-Hui Sia, Gregory Y H Lip, Qing Yang, Xin Zhou
{"title":"直接口服抗凝剂患者颅内出血预测模型的开发与验证。","authors":"Yuanyuan Liu, Linjie Li, Jingge Li, Hangkuan Liu, A Geru, Yulong Wang, Yongle Li, Ching-Hui Sia, Gregory Y H Lip, Qing Yang, Xin Zhou","doi":"10.1177/10760296241271338","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Intracranial haemorrhage (ICH) poses a significant threat to patients on Direct Oral Anticoagulants (DOACs), with existing risk scores inadequately predicting ICH risk in these patients. We aim to develop and validate a predictive model for ICH risk in DOAC-treated patients.</p><p><strong>Methods: </strong>24,794 patients treated with a DOAC were identified in a province-wide electronic medical and health data platform in Tianjin, China. The cohort was randomly split into a 4:1 ratio for model development and validation. We utilized forward stepwise selection, Least Absolute Shrinkage and Selection Operator (LASSO), and eXtreme Gradient Boosting (XGBoost) to select predictors. Model performance was compared using the area under the curve (AUC) and net reclassification index (NRI). The optimal model was stratified and compared with the DOAC model.</p><p><strong>Results: </strong>The median age is 68.0 years, and 50.4% of participants are male. The XGBoost model, incorporating six independent factors (history of hemorrhagic stroke, peripheral artery disease, venous thromboembolism, hypertension, age, low-density lipoprotein cholesterol levels), demonstrated superior performance in the development dateset. It showed moderate discrimination (AUC: 0.68, 95% CI: 0.64-0.73), outperforming existing DOAC scores (ΔAUC = 0.063, <i>P </i>= 0.003; NRI = 0.374, <i>P </i>< 0.001). Risk categories significantly stratified ICH risk (low risk: 0.26%, moderate risk: 0.74%, high risk: 5.51%). Finally, the model demonstrated consistent predictive performance in the internal validation.</p><p><strong>Conclusion: </strong>In a real-world Chinese population using DOAC therapy, this study presents a reliable predictive model for ICH risk. The XGBoost model, integrating six key risk factors, offers a valuable tool for individualized risk assessment in the context of oral anticoagulation therapy.</p>","PeriodicalId":10335,"journal":{"name":"Clinical and Applied Thrombosis/Hemostasis","volume":"30 ","pages":"10760296241271338"},"PeriodicalIF":2.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11325470/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development and Validation of a Predictive Model for Intracranial Haemorrhage in Patients on Direct Oral Anticoagulants.\",\"authors\":\"Yuanyuan Liu, Linjie Li, Jingge Li, Hangkuan Liu, A Geru, Yulong Wang, Yongle Li, Ching-Hui Sia, Gregory Y H Lip, Qing Yang, Xin Zhou\",\"doi\":\"10.1177/10760296241271338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Intracranial haemorrhage (ICH) poses a significant threat to patients on Direct Oral Anticoagulants (DOACs), with existing risk scores inadequately predicting ICH risk in these patients. We aim to develop and validate a predictive model for ICH risk in DOAC-treated patients.</p><p><strong>Methods: </strong>24,794 patients treated with a DOAC were identified in a province-wide electronic medical and health data platform in Tianjin, China. The cohort was randomly split into a 4:1 ratio for model development and validation. We utilized forward stepwise selection, Least Absolute Shrinkage and Selection Operator (LASSO), and eXtreme Gradient Boosting (XGBoost) to select predictors. Model performance was compared using the area under the curve (AUC) and net reclassification index (NRI). The optimal model was stratified and compared with the DOAC model.</p><p><strong>Results: </strong>The median age is 68.0 years, and 50.4% of participants are male. The XGBoost model, incorporating six independent factors (history of hemorrhagic stroke, peripheral artery disease, venous thromboembolism, hypertension, age, low-density lipoprotein cholesterol levels), demonstrated superior performance in the development dateset. It showed moderate discrimination (AUC: 0.68, 95% CI: 0.64-0.73), outperforming existing DOAC scores (ΔAUC = 0.063, <i>P </i>= 0.003; NRI = 0.374, <i>P </i>< 0.001). Risk categories significantly stratified ICH risk (low risk: 0.26%, moderate risk: 0.74%, high risk: 5.51%). Finally, the model demonstrated consistent predictive performance in the internal validation.</p><p><strong>Conclusion: </strong>In a real-world Chinese population using DOAC therapy, this study presents a reliable predictive model for ICH risk. The XGBoost model, integrating six key risk factors, offers a valuable tool for individualized risk assessment in the context of oral anticoagulation therapy.</p>\",\"PeriodicalId\":10335,\"journal\":{\"name\":\"Clinical and Applied Thrombosis/Hemostasis\",\"volume\":\"30 \",\"pages\":\"10760296241271338\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11325470/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Applied Thrombosis/Hemostasis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/10760296241271338\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Applied Thrombosis/Hemostasis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/10760296241271338","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:颅内出血(ICH)对服用直接口服抗凝药(DOACs)的患者构成重大威胁,而现有的风险评分不能充分预测这些患者的ICH风险。我们的目标是开发并验证一种预测 DOAC 治疗患者 ICH 风险的模型。方法:在中国天津的一个全省电子医疗健康数据平台上确定了 24,794 名接受 DOAC 治疗的患者。在模型开发和验证过程中,队列按 4:1 的比例随机分配。我们采用了正向逐步选择、最小绝对收缩和选择操作器(LASSO)和极梯度提升(XGBoost)来选择预测因子。使用曲线下面积(AUC)和净再分类指数(NRI)对模型性能进行比较。对最佳模型进行分层,并与 DOAC 模型进行比较:中位年龄为 68.0 岁,50.4% 的参与者为男性。包含六个独立因素(出血性中风史、外周动脉疾病、静脉血栓栓塞、高血压、年龄、低密度脂蛋白胆固醇水平)的 XGBoost 模型在开发日期集中表现出卓越的性能。它显示出中等程度的分辨能力(AUC:0.68,95% CI:0.64-0.73),优于现有的 DOAC 评分(ΔAUC = 0.063,P = 0.003;NRI = 0.374,P 结论:DOAC 评分的分辨能力与现有的 DOAC 评分相近:在使用 DOAC 治疗的真实中国人群中,本研究提出了一种可靠的 ICH 风险预测模型。XGBoost 模型整合了六个关键的风险因素,为口服抗凝疗法中的个体化风险评估提供了有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development and Validation of a Predictive Model for Intracranial Haemorrhage in Patients on Direct Oral Anticoagulants.

Background: Intracranial haemorrhage (ICH) poses a significant threat to patients on Direct Oral Anticoagulants (DOACs), with existing risk scores inadequately predicting ICH risk in these patients. We aim to develop and validate a predictive model for ICH risk in DOAC-treated patients.

Methods: 24,794 patients treated with a DOAC were identified in a province-wide electronic medical and health data platform in Tianjin, China. The cohort was randomly split into a 4:1 ratio for model development and validation. We utilized forward stepwise selection, Least Absolute Shrinkage and Selection Operator (LASSO), and eXtreme Gradient Boosting (XGBoost) to select predictors. Model performance was compared using the area under the curve (AUC) and net reclassification index (NRI). The optimal model was stratified and compared with the DOAC model.

Results: The median age is 68.0 years, and 50.4% of participants are male. The XGBoost model, incorporating six independent factors (history of hemorrhagic stroke, peripheral artery disease, venous thromboembolism, hypertension, age, low-density lipoprotein cholesterol levels), demonstrated superior performance in the development dateset. It showed moderate discrimination (AUC: 0.68, 95% CI: 0.64-0.73), outperforming existing DOAC scores (ΔAUC = 0.063, P = 0.003; NRI = 0.374, P < 0.001). Risk categories significantly stratified ICH risk (low risk: 0.26%, moderate risk: 0.74%, high risk: 5.51%). Finally, the model demonstrated consistent predictive performance in the internal validation.

Conclusion: In a real-world Chinese population using DOAC therapy, this study presents a reliable predictive model for ICH risk. The XGBoost model, integrating six key risk factors, offers a valuable tool for individualized risk assessment in the context of oral anticoagulation therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
3.40%
发文量
150
审稿时长
2 months
期刊介绍: CATH is a peer-reviewed bi-monthly journal that addresses the practical clinical and laboratory issues involved in managing bleeding and clotting disorders, especially those related to thrombosis, hemostasis, and vascular disorders. CATH covers clinical trials, studies on etiology, pathophysiology, diagnosis and treatment of thrombohemorrhagic disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信