实现太阳能电池快速印刷的导电胶体包覆晶量子点油墨

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xuliang Zhang, Hehe Huang, Chenyu Zhao, Lujie Jin, Chihyung Lee, Youyong Li, Doo-Hyun Ko, Wanli Ma, Tom Wu, Jianyu Yuan
{"title":"实现太阳能电池快速印刷的导电胶体包覆晶量子点油墨","authors":"Xuliang Zhang, Hehe Huang, Chenyu Zhao, Lujie Jin, Chihyung Lee, Youyong Li, Doo-Hyun Ko, Wanli Ma, Tom Wu, Jianyu Yuan","doi":"10.1038/s41560-024-01608-5","DOIUrl":null,"url":null,"abstract":"<p>Quantum dot (QD) provides a versatile platform for high-throughput processing of semiconductors for large-area optoelectronic applications. Unfortunately, the QD solar cell is hampered by the time-consuming layer-by-layer process, a major challenge in manufacturing printable devices. Here we demonstrate a sequential acylation-coordination protocol including amine-assisted ligand removal and Lewis base-coordinated surface restoration to synthesize conductive APbI<sub>3</sub> (A = formamidinium (FA), Cs or methylammonium) colloidal perovskite QD (PeQD) inks that enable one-step PeQD film deposition without additional solid-state ligand exchange. The resultant PeQD film displays uniform morphology with elevated electronic coupling, more ordered structure and homogeneous energy landscape. Narrow-bandgap FAPbI<sub>3</sub> PeQD-based solar cells achieve a champion efficiency of 16.61% (certified 16.20%), exceeding the values obtained with other QD inks and layer-by-layer processes. The conductive PeQD inks are compatible with large-area device (9 × 9 cm<sup>2</sup>) fabrication using the blade-coating technique with a speed up to 50 mm s<sup>−1</sup>.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"131 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conductive colloidal perovskite quantum dot inks towards fast printing of solar cells\",\"authors\":\"Xuliang Zhang, Hehe Huang, Chenyu Zhao, Lujie Jin, Chihyung Lee, Youyong Li, Doo-Hyun Ko, Wanli Ma, Tom Wu, Jianyu Yuan\",\"doi\":\"10.1038/s41560-024-01608-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quantum dot (QD) provides a versatile platform for high-throughput processing of semiconductors for large-area optoelectronic applications. Unfortunately, the QD solar cell is hampered by the time-consuming layer-by-layer process, a major challenge in manufacturing printable devices. Here we demonstrate a sequential acylation-coordination protocol including amine-assisted ligand removal and Lewis base-coordinated surface restoration to synthesize conductive APbI<sub>3</sub> (A = formamidinium (FA), Cs or methylammonium) colloidal perovskite QD (PeQD) inks that enable one-step PeQD film deposition without additional solid-state ligand exchange. The resultant PeQD film displays uniform morphology with elevated electronic coupling, more ordered structure and homogeneous energy landscape. Narrow-bandgap FAPbI<sub>3</sub> PeQD-based solar cells achieve a champion efficiency of 16.61% (certified 16.20%), exceeding the values obtained with other QD inks and layer-by-layer processes. The conductive PeQD inks are compatible with large-area device (9 × 9 cm<sup>2</sup>) fabrication using the blade-coating technique with a speed up to 50 mm s<sup>−1</sup>.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"131 1\",\"pages\":\"\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41560-024-01608-5\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41560-024-01608-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

量子点(QD)为大面积光电应用的半导体高通量加工提供了一个多功能平台。遗憾的是,量子点太阳能电池受制于耗时的逐层制备工艺,这是制造可印刷器件的一大挑战。在这里,我们展示了一种顺序酰化配位协议,包括胺辅助配体去除和路易斯碱配位表面修复,以合成导电 APbI3(A = 甲脒 (FA)、铯或甲基铵)胶体包晶状 QD(PeQD)油墨,无需额外的固态配体交换即可实现一步式 PeQD 薄膜沉积。所制备的 PeQD 薄膜具有均匀的形貌、更高的电子耦合、更有序的结构和均匀的能量分布。基于 FAPbI3 PeQD 的窄带隙太阳能电池的冠军效率达到了 16.61%(认证值为 16.20%),超过了使用其他 QD 墨水和逐层工艺获得的数值。导电 PeQD 油墨可用于使用刀片涂层技术制造大面积器件(9 × 9 cm2),速度可达 50 mm s-1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Conductive colloidal perovskite quantum dot inks towards fast printing of solar cells

Conductive colloidal perovskite quantum dot inks towards fast printing of solar cells

Quantum dot (QD) provides a versatile platform for high-throughput processing of semiconductors for large-area optoelectronic applications. Unfortunately, the QD solar cell is hampered by the time-consuming layer-by-layer process, a major challenge in manufacturing printable devices. Here we demonstrate a sequential acylation-coordination protocol including amine-assisted ligand removal and Lewis base-coordinated surface restoration to synthesize conductive APbI3 (A = formamidinium (FA), Cs or methylammonium) colloidal perovskite QD (PeQD) inks that enable one-step PeQD film deposition without additional solid-state ligand exchange. The resultant PeQD film displays uniform morphology with elevated electronic coupling, more ordered structure and homogeneous energy landscape. Narrow-bandgap FAPbI3 PeQD-based solar cells achieve a champion efficiency of 16.61% (certified 16.20%), exceeding the values obtained with other QD inks and layer-by-layer processes. The conductive PeQD inks are compatible with large-area device (9 × 9 cm2) fabrication using the blade-coating technique with a speed up to 50 mm s−1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信