广义非局部时间和离散状态随机过程的准极限分布

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Jorge Littin Curinao
{"title":"广义非局部时间和离散状态随机过程的准极限分布","authors":"Jorge Littin Curinao","doi":"10.1007/s13540-024-00312-1","DOIUrl":null,"url":null,"abstract":"<p>In this article, we study the asymptotic behavior of a discrete space-state and continuous-time killed process <span>\\(({\\widetilde{X}}^{\\nu }(t))_{t \\ge 0}\\)</span> whose transition probabilities are governed by a non-local convolution type-operator <span>\\(\\mathcal {D}^{\\nu }\\)</span>. Approximation formulas are provided for small and large values of <span>\\(t \\ge 0\\)</span>. In the latter case, the problem of the existence of a Quasi limiting distribution (QLD) is studied in detail, proving that (i) The QLD strongly depends on the initial distribution and (ii) the definition of Quasi Stationary Distribution (QSD) and QLD differs, excepting some very particular cases. Previous to the statement of our main results, a detailed description of our kind of processes is presented. This article generalizes the previous work [25], which is focused on a one-dimensional fractional birth and death process with transition probabilities governed by a fractional Caputo-Dzhrbashyan derivative.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasi Limiting Distributions on generalized non-local in time and discrete-state stochastic processes\",\"authors\":\"Jorge Littin Curinao\",\"doi\":\"10.1007/s13540-024-00312-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we study the asymptotic behavior of a discrete space-state and continuous-time killed process <span>\\\\(({\\\\widetilde{X}}^{\\\\nu }(t))_{t \\\\ge 0}\\\\)</span> whose transition probabilities are governed by a non-local convolution type-operator <span>\\\\(\\\\mathcal {D}^{\\\\nu }\\\\)</span>. Approximation formulas are provided for small and large values of <span>\\\\(t \\\\ge 0\\\\)</span>. In the latter case, the problem of the existence of a Quasi limiting distribution (QLD) is studied in detail, proving that (i) The QLD strongly depends on the initial distribution and (ii) the definition of Quasi Stationary Distribution (QSD) and QLD differs, excepting some very particular cases. Previous to the statement of our main results, a detailed description of our kind of processes is presented. This article generalizes the previous work [25], which is focused on a one-dimensional fractional birth and death process with transition probabilities governed by a fractional Caputo-Dzhrbashyan derivative.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00312-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00312-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们研究了离散空间态和连续时间被杀过程的渐近行为,该过程的过渡概率受非局部卷积型操作符 (\mathcal {D}^{\nu }\ )的控制。为 \(t \ge 0\) 的小值和大值提供了近似公式。在后一种情况下,详细研究了准极限分布(QLD)的存在问题,证明了(i)QLD 强烈依赖于初始分布;(ii)除了一些非常特殊的情况外,准静态分布(QSD)和 QLD 的定义是不同的。在陈述我们的主要结果之前,我们将详细描述我们这种过程。本文概括了之前的工作[25],其重点是一维分数出生和死亡过程,其过渡概率受分数卡普托-日巴什扬导数控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quasi Limiting Distributions on generalized non-local in time and discrete-state stochastic processes

Quasi Limiting Distributions on generalized non-local in time and discrete-state stochastic processes

In this article, we study the asymptotic behavior of a discrete space-state and continuous-time killed process \(({\widetilde{X}}^{\nu }(t))_{t \ge 0}\) whose transition probabilities are governed by a non-local convolution type-operator \(\mathcal {D}^{\nu }\). Approximation formulas are provided for small and large values of \(t \ge 0\). In the latter case, the problem of the existence of a Quasi limiting distribution (QLD) is studied in detail, proving that (i) The QLD strongly depends on the initial distribution and (ii) the definition of Quasi Stationary Distribution (QSD) and QLD differs, excepting some very particular cases. Previous to the statement of our main results, a detailed description of our kind of processes is presented. This article generalizes the previous work [25], which is focused on a one-dimensional fractional birth and death process with transition probabilities governed by a fractional Caputo-Dzhrbashyan derivative.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信