Sahil Hegde, Michael M. Wyatt and Steven R. Furlanetto
{"title":"隐蔽的活动星系核群可以解释 JWST 观测到的 z > 10 大光度天体过多的原因","authors":"Sahil Hegde, Michael M. Wyatt and Steven R. Furlanetto","doi":"10.1088/1475-7516/2024/08/025","DOIUrl":null,"url":null,"abstract":"The first wave of observations with JWST has revealed a striking overabundance of luminous galaxies at early times (z > 10) compared to models of galaxies calibrated to pre-JWST data. Early observations have also uncovered a large population of supermassive black holes (SMBHs) at z > 6. Because many of the high-z objects appear extended, the contribution of active galactic nuclei (AGNs) to the total luminosity has been assumed to be negligible. In this work, we use a semi-empirical model for assigning AGNs to galaxies to show that active galaxies can boost the stellar luminosity function (LF) enough to solve the overabundance problem while simultaneously remaining consistent with the observed morphologies of high-z sources. We construct a model for the composite AGN+galaxy LF by connecting dark matter halo masses to galaxy and SMBH masses and luminosities, accounting for dispersion in the mapping between host galaxy and SMBH mass and luminosity. By calibrating the model parameters — which characterize the M∙-M* relation — to a compilation of z > 10 JWST UVLF data, we show that AGN emission can account for the excess luminosity under a variety of scenarios, including one where 10% of galaxies host BHs of comparable luminosities to their stellar components. Using a sample of simulated objects and real observations, we demonstrate that such low-luminosity AGNs can be `hidden' in their host galaxies and be missed in common morphological analyses. We find that for this explanation to be viable, our model requires a population of BHs that are overmassive (M∙/M* ~ 10-2) with respect to their host galaxies compared to the local relation and are more consistent with the observed relation at z = 4-8. We explore the implications of this model for BH seed properties and comment on observational diagnostics necessary to further investigate this explanation.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hidden population of active galactic nuclei can explain the overabundance of luminous z > 10 objects observed by JWST\",\"authors\":\"Sahil Hegde, Michael M. Wyatt and Steven R. Furlanetto\",\"doi\":\"10.1088/1475-7516/2024/08/025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The first wave of observations with JWST has revealed a striking overabundance of luminous galaxies at early times (z > 10) compared to models of galaxies calibrated to pre-JWST data. Early observations have also uncovered a large population of supermassive black holes (SMBHs) at z > 6. Because many of the high-z objects appear extended, the contribution of active galactic nuclei (AGNs) to the total luminosity has been assumed to be negligible. In this work, we use a semi-empirical model for assigning AGNs to galaxies to show that active galaxies can boost the stellar luminosity function (LF) enough to solve the overabundance problem while simultaneously remaining consistent with the observed morphologies of high-z sources. We construct a model for the composite AGN+galaxy LF by connecting dark matter halo masses to galaxy and SMBH masses and luminosities, accounting for dispersion in the mapping between host galaxy and SMBH mass and luminosity. By calibrating the model parameters — which characterize the M∙-M* relation — to a compilation of z > 10 JWST UVLF data, we show that AGN emission can account for the excess luminosity under a variety of scenarios, including one where 10% of galaxies host BHs of comparable luminosities to their stellar components. Using a sample of simulated objects and real observations, we demonstrate that such low-luminosity AGNs can be `hidden' in their host galaxies and be missed in common morphological analyses. We find that for this explanation to be viable, our model requires a population of BHs that are overmassive (M∙/M* ~ 10-2) with respect to their host galaxies compared to the local relation and are more consistent with the observed relation at z = 4-8. We explore the implications of this model for BH seed properties and comment on observational diagnostics necessary to further investigate this explanation.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2024/08/025\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2024/08/025","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
A hidden population of active galactic nuclei can explain the overabundance of luminous z > 10 objects observed by JWST
The first wave of observations with JWST has revealed a striking overabundance of luminous galaxies at early times (z > 10) compared to models of galaxies calibrated to pre-JWST data. Early observations have also uncovered a large population of supermassive black holes (SMBHs) at z > 6. Because many of the high-z objects appear extended, the contribution of active galactic nuclei (AGNs) to the total luminosity has been assumed to be negligible. In this work, we use a semi-empirical model for assigning AGNs to galaxies to show that active galaxies can boost the stellar luminosity function (LF) enough to solve the overabundance problem while simultaneously remaining consistent with the observed morphologies of high-z sources. We construct a model for the composite AGN+galaxy LF by connecting dark matter halo masses to galaxy and SMBH masses and luminosities, accounting for dispersion in the mapping between host galaxy and SMBH mass and luminosity. By calibrating the model parameters — which characterize the M∙-M* relation — to a compilation of z > 10 JWST UVLF data, we show that AGN emission can account for the excess luminosity under a variety of scenarios, including one where 10% of galaxies host BHs of comparable luminosities to their stellar components. Using a sample of simulated objects and real observations, we demonstrate that such low-luminosity AGNs can be `hidden' in their host galaxies and be missed in common morphological analyses. We find that for this explanation to be viable, our model requires a population of BHs that are overmassive (M∙/M* ~ 10-2) with respect to their host galaxies compared to the local relation and are more consistent with the observed relation at z = 4-8. We explore the implications of this model for BH seed properties and comment on observational diagnostics necessary to further investigate this explanation.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.