樱井天体的非热辐射

IF 5.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
M. Hajduk, P. A. M. van Hoof, A. A. Zijlstra, G. Van de Steene, S. Kimeswenger, D. Barría, D. Tafoya, J. A. Toalá
{"title":"樱井天体的非热辐射","authors":"M. Hajduk, P. A. M. van Hoof, A. A. Zijlstra, G. Van de Steene, S. Kimeswenger, D. Barría, D. Tafoya, J. A. Toalá","doi":"10.1051/0004-6361/202450496","DOIUrl":null,"url":null,"abstract":"<i>Context.<i/> The very late thermal pulse (VLTP) affects the evolution of ∼20% of 1–8 <i>M<i/><sub>⊙<sub/> stars, repeating the last red giant phases within a few years and leading to the formation of a new, but hydrogen-poor, nebula within the old planetary nebula. The strong dust formation in the latter obscures the optical and near-infrared radiation of the star.<i>Aims.<i/> We aimed to determine the reheating timescale of the central star in Sakurai’s Object, which is an important constraint for the poorly understood VLTP evolution.<i>Methods.<i/> We observed the radio continuum emission of Sakurai’s Object for almost 20 years, from 2004 to 2023. Continuous, multi-frequency observations proved to be essential for distinguishing between phases dominated by photoionization and shock ionization.<i>Results.<i/> The flux density fluctuates by more than a factor of 40 within months to years. The spectral index remained negative between 2006 and 2017 and has been close to zero since 2019. The emission region has been only barely resolved since 2021.<i>Conclusions.<i/> Non-thermal radio emission observed from 2004 to 2017 traces shocks induced by wind interactions due to discrete mass-loss events. Thermal emission dominates from 2019 to 2023 and may indicate photoionization of the nebula by the central star.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-thermal radio emission in Sakurai’s Object\",\"authors\":\"M. Hajduk, P. A. M. van Hoof, A. A. Zijlstra, G. Van de Steene, S. Kimeswenger, D. Barría, D. Tafoya, J. A. Toalá\",\"doi\":\"10.1051/0004-6361/202450496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<i>Context.<i/> The very late thermal pulse (VLTP) affects the evolution of ∼20% of 1–8 <i>M<i/><sub>⊙<sub/> stars, repeating the last red giant phases within a few years and leading to the formation of a new, but hydrogen-poor, nebula within the old planetary nebula. The strong dust formation in the latter obscures the optical and near-infrared radiation of the star.<i>Aims.<i/> We aimed to determine the reheating timescale of the central star in Sakurai’s Object, which is an important constraint for the poorly understood VLTP evolution.<i>Methods.<i/> We observed the radio continuum emission of Sakurai’s Object for almost 20 years, from 2004 to 2023. Continuous, multi-frequency observations proved to be essential for distinguishing between phases dominated by photoionization and shock ionization.<i>Results.<i/> The flux density fluctuates by more than a factor of 40 within months to years. The spectral index remained negative between 2006 and 2017 and has been close to zero since 2019. The emission region has been only barely resolved since 2021.<i>Conclusions.<i/> Non-thermal radio emission observed from 2004 to 2017 traces shocks induced by wind interactions due to discrete mass-loss events. Thermal emission dominates from 2019 to 2023 and may indicate photoionization of the nebula by the central star.\",\"PeriodicalId\":8571,\"journal\":{\"name\":\"Astronomy & Astrophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomy & Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1051/0004-6361/202450496\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202450496","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

背景。极晚期热脉冲(VLTP)影响了20%∼1-8 M⊙恒星的演化,在几年内重复了最后的红巨星阶段,并导致在旧的行星状星云内形成一个新的、但贫氢的星云。后者形成的强大尘埃遮蔽了恒星的光学和近红外辐射。我们的目的是确定樱井天体中中心恒星的再热时间尺度,这对于理解不深的VLTP演化来说是一个重要的约束条件。从2004年到2023年,我们对樱井天体的射电连续发射进行了近20年的观测。事实证明,连续的多频率观测对于区分光离子化和冲击电离为主的阶段至关重要。通量密度在数月至数年内波动超过 40 倍。光谱指数在 2006 年至 2017 年间一直为负值,自 2019 年以来一直接近于零。自 2021 年以来,发射区只能勉强分辨。从 2004 年到 2017 年观测到的非热辐射追踪了离散质量损失事件引起的风相互作用所诱发的冲击。热辐射在2019年至2023年期间占主导地位,可能表明中心恒星对星云进行了光离子化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-thermal radio emission in Sakurai’s Object
Context. The very late thermal pulse (VLTP) affects the evolution of ∼20% of 1–8 M stars, repeating the last red giant phases within a few years and leading to the formation of a new, but hydrogen-poor, nebula within the old planetary nebula. The strong dust formation in the latter obscures the optical and near-infrared radiation of the star.Aims. We aimed to determine the reheating timescale of the central star in Sakurai’s Object, which is an important constraint for the poorly understood VLTP evolution.Methods. We observed the radio continuum emission of Sakurai’s Object for almost 20 years, from 2004 to 2023. Continuous, multi-frequency observations proved to be essential for distinguishing between phases dominated by photoionization and shock ionization.Results. The flux density fluctuates by more than a factor of 40 within months to years. The spectral index remained negative between 2006 and 2017 and has been close to zero since 2019. The emission region has been only barely resolved since 2021.Conclusions. Non-thermal radio emission observed from 2004 to 2017 traces shocks induced by wind interactions due to discrete mass-loss events. Thermal emission dominates from 2019 to 2023 and may indicate photoionization of the nebula by the central star.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信