{"title":"大质量恒星形成区的自相似星团结构:从星团到嵌入星团的孤立演化","authors":"Jian-wen Zhou, Pavel Kroupa, Sami Dib","doi":"10.1051/0004-6361/202450412","DOIUrl":null,"url":null,"abstract":"We used the dendrogram algorithm to decompose the surface density distributions of stars into hierarchical structures. These structures were tied to the multiscale structures of star clusters. A similar power-law for the mass-size relation of star clusters measured at different scales suggests a self-similar structure of star clusters. We used the minimum spanning tree method to measure the separations between clusters and gas clumps in each massive star-forming region. The separations between clusters, between clumps, and between clusters and clumps were comparable, which indicates that the evolution from clump to embedded cluster proceeds in isolation and locally, and does not affect the surrounding objects significantly. By comparing the mass functions of the ATLASGAL clumps and the identified embedded clusters, we confirm that a constant star formation efficiency of ≈0.33 can be a typical value for the ATLASGAL clumps.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-similar cluster structures in massive star-forming regions: Isolated evolution from clumps to embedded clusters\",\"authors\":\"Jian-wen Zhou, Pavel Kroupa, Sami Dib\",\"doi\":\"10.1051/0004-6361/202450412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We used the dendrogram algorithm to decompose the surface density distributions of stars into hierarchical structures. These structures were tied to the multiscale structures of star clusters. A similar power-law for the mass-size relation of star clusters measured at different scales suggests a self-similar structure of star clusters. We used the minimum spanning tree method to measure the separations between clusters and gas clumps in each massive star-forming region. The separations between clusters, between clumps, and between clusters and clumps were comparable, which indicates that the evolution from clump to embedded cluster proceeds in isolation and locally, and does not affect the surrounding objects significantly. By comparing the mass functions of the ATLASGAL clumps and the identified embedded clusters, we confirm that a constant star formation efficiency of ≈0.33 can be a typical value for the ATLASGAL clumps.\",\"PeriodicalId\":8571,\"journal\":{\"name\":\"Astronomy & Astrophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomy & Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1051/0004-6361/202450412\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202450412","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Self-similar cluster structures in massive star-forming regions: Isolated evolution from clumps to embedded clusters
We used the dendrogram algorithm to decompose the surface density distributions of stars into hierarchical structures. These structures were tied to the multiscale structures of star clusters. A similar power-law for the mass-size relation of star clusters measured at different scales suggests a self-similar structure of star clusters. We used the minimum spanning tree method to measure the separations between clusters and gas clumps in each massive star-forming region. The separations between clusters, between clumps, and between clusters and clumps were comparable, which indicates that the evolution from clump to embedded cluster proceeds in isolation and locally, and does not affect the surrounding objects significantly. By comparing the mass functions of the ATLASGAL clumps and the identified embedded clusters, we confirm that a constant star formation efficiency of ≈0.33 can be a typical value for the ATLASGAL clumps.
期刊介绍:
Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.