Roberto J. Brea, Armand Hernández, Alejandro Criado* and Jesús Mosquera*,
{"title":"有策略地利用带电分子中的反离子效应破译溶解度概念","authors":"Roberto J. Brea, Armand Hernández, Alejandro Criado* and Jesús Mosquera*, ","doi":"10.1021/acs.jchemed.4c0005710.1021/acs.jchemed.4c00057","DOIUrl":null,"url":null,"abstract":"<p >Solubility is an essential concept in chemistry that describes the ability of a substance to dissolve in a particular solvent. Despite its importance in many fields of science, understanding the basic principles of solubility is challenging for many undergraduate students. Notably, students often encounter difficulties in comprehending the role of counterions when dealing with charged molecules. Here, we bring the opportunity to assimilate the key concepts of solubility regarding the role of counterions by developing a straightforward, cheap, and visually appealing experiment that focuses on the strategic use of counterions to control solubility. A student questionnaire delivered encouraging results with most of students giving positive feedback in both interest and training their hands-on skills. Hence, our experiment offers a proficient understanding of the solubility concept, thus preparing undergraduate students for advanced courses in the various subject areas of chemistry.</p>","PeriodicalId":43,"journal":{"name":"Journal of Chemical Education","volume":"101 8","pages":"3390–3395 3390–3395"},"PeriodicalIF":2.9000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jchemed.4c00057","citationCount":"0","resultStr":"{\"title\":\"Deciphering the Concept of Solubility by Strategically Using the Counterion Effect in Charged Molecules\",\"authors\":\"Roberto J. Brea, Armand Hernández, Alejandro Criado* and Jesús Mosquera*, \",\"doi\":\"10.1021/acs.jchemed.4c0005710.1021/acs.jchemed.4c00057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Solubility is an essential concept in chemistry that describes the ability of a substance to dissolve in a particular solvent. Despite its importance in many fields of science, understanding the basic principles of solubility is challenging for many undergraduate students. Notably, students often encounter difficulties in comprehending the role of counterions when dealing with charged molecules. Here, we bring the opportunity to assimilate the key concepts of solubility regarding the role of counterions by developing a straightforward, cheap, and visually appealing experiment that focuses on the strategic use of counterions to control solubility. A student questionnaire delivered encouraging results with most of students giving positive feedback in both interest and training their hands-on skills. Hence, our experiment offers a proficient understanding of the solubility concept, thus preparing undergraduate students for advanced courses in the various subject areas of chemistry.</p>\",\"PeriodicalId\":43,\"journal\":{\"name\":\"Journal of Chemical Education\",\"volume\":\"101 8\",\"pages\":\"3390–3395 3390–3395\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.jchemed.4c00057\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Education\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00057\",\"RegionNum\":3,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Education","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00057","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Deciphering the Concept of Solubility by Strategically Using the Counterion Effect in Charged Molecules
Solubility is an essential concept in chemistry that describes the ability of a substance to dissolve in a particular solvent. Despite its importance in many fields of science, understanding the basic principles of solubility is challenging for many undergraduate students. Notably, students often encounter difficulties in comprehending the role of counterions when dealing with charged molecules. Here, we bring the opportunity to assimilate the key concepts of solubility regarding the role of counterions by developing a straightforward, cheap, and visually appealing experiment that focuses on the strategic use of counterions to control solubility. A student questionnaire delivered encouraging results with most of students giving positive feedback in both interest and training their hands-on skills. Hence, our experiment offers a proficient understanding of the solubility concept, thus preparing undergraduate students for advanced courses in the various subject areas of chemistry.
期刊介绍:
The Journal of Chemical Education is the official journal of the Division of Chemical Education of the American Chemical Society, co-published with the American Chemical Society Publications Division. Launched in 1924, the Journal of Chemical Education is the world’s premier chemical education journal. The Journal publishes peer-reviewed articles and related information as a resource to those in the field of chemical education and to those institutions that serve them. JCE typically addresses chemical content, activities, laboratory experiments, instructional methods, and pedagogies. The Journal serves as a means of communication among people across the world who are interested in the teaching and learning of chemistry. This includes instructors of chemistry from middle school through graduate school, professional staff who support these teaching activities, as well as some scientists in commerce, industry, and government.