{"title":"[七叶皂苷诱导慢性髓性白血病 K562 细胞铁变态反应的效应和分子机制]","authors":"J Y Wei, L Li, H M Liu","doi":"10.3760/cma.j.cn121090-20231218-00323","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective:</b> To investigate the effect and molecular mechanism of hesperadin in inducing ferroptosis in chronic myeloid leukemia cell line K562 cells. <b>Methods:</b> The effects of hesperadin on the viability, proliferation, and migration of K562 cells were detected though CCK8, EDU-594, and Transwell assays, and the apoptotic rate of K562 cells was detected by flow cytometry. In addition, C11-BODIPY and FerroOrange were utilized to detect intracellular lipid peroxidation and Fe(2+) levels. Meanwhile, the expression levels of ferroptosis-associated protein solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) in cells were detected through Western blot. Lipid peroxidation and Fe(2+) levels were also detected after transfection of cells with SLC7A11 overexpression plasmid. <b>Results:</b> Hesperadin decreased cell viability in a dose-dependent manner with IC(50) of 0.544 μmol/L. Hesperadin concentrations of 0.4 and 0.8 μmol/L were selected for follow-up experiments. EDU-594, Transwell, and flow cytometry showed significantly decreased proliferation and migration rate of K562 cells after 0.4 and 0.8 μmol/L hesperadin treatment for 24 h, and the apoptosis rate was significantly increased compared with the control group (<i>P</i><0.05). Western blot indicated a downregulated expression of the antiapoptotic protein Bcl-2 and an elevated expression of proapoptotic proteins Bax and Caspase-3. Moreover, hesperadin increased intracellular lipid peroxidation and Fe(2+) levels compared with the control treatment (<i>P</i><0.05). The combination of ferroptosis inhibitor (Fer-1) and hesperadin could reverse the effect of hesperadin on K562 cells. The mRNA and protein levels of ferroptosis-related genes SLC7A11 and GPX4 were significantly decreased in the 0.8 μmol/L hesperadin-treated group (<i>P</i><0.05). SLC7A11 overexpression can inhibit hesperadin effect and alleviate ferroptosis. <b>Conclusion:</b> Hesperadin can promote ferroptosis in K562 cells by regulating the SLC7A11/GPX4 axis.</p>","PeriodicalId":24016,"journal":{"name":"Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi","volume":"45 6","pages":"577-585"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310802/pdf/","citationCount":"0","resultStr":"{\"title\":\"[Effect and molecular mechanism of hesperadin-induced ferroptosis in chronic myeloid leukemia K562 cells].\",\"authors\":\"J Y Wei, L Li, H M Liu\",\"doi\":\"10.3760/cma.j.cn121090-20231218-00323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Objective:</b> To investigate the effect and molecular mechanism of hesperadin in inducing ferroptosis in chronic myeloid leukemia cell line K562 cells. <b>Methods:</b> The effects of hesperadin on the viability, proliferation, and migration of K562 cells were detected though CCK8, EDU-594, and Transwell assays, and the apoptotic rate of K562 cells was detected by flow cytometry. In addition, C11-BODIPY and FerroOrange were utilized to detect intracellular lipid peroxidation and Fe(2+) levels. Meanwhile, the expression levels of ferroptosis-associated protein solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) in cells were detected through Western blot. Lipid peroxidation and Fe(2+) levels were also detected after transfection of cells with SLC7A11 overexpression plasmid. <b>Results:</b> Hesperadin decreased cell viability in a dose-dependent manner with IC(50) of 0.544 μmol/L. Hesperadin concentrations of 0.4 and 0.8 μmol/L were selected for follow-up experiments. EDU-594, Transwell, and flow cytometry showed significantly decreased proliferation and migration rate of K562 cells after 0.4 and 0.8 μmol/L hesperadin treatment for 24 h, and the apoptosis rate was significantly increased compared with the control group (<i>P</i><0.05). Western blot indicated a downregulated expression of the antiapoptotic protein Bcl-2 and an elevated expression of proapoptotic proteins Bax and Caspase-3. Moreover, hesperadin increased intracellular lipid peroxidation and Fe(2+) levels compared with the control treatment (<i>P</i><0.05). The combination of ferroptosis inhibitor (Fer-1) and hesperadin could reverse the effect of hesperadin on K562 cells. The mRNA and protein levels of ferroptosis-related genes SLC7A11 and GPX4 were significantly decreased in the 0.8 μmol/L hesperadin-treated group (<i>P</i><0.05). SLC7A11 overexpression can inhibit hesperadin effect and alleviate ferroptosis. <b>Conclusion:</b> Hesperadin can promote ferroptosis in K562 cells by regulating the SLC7A11/GPX4 axis.</p>\",\"PeriodicalId\":24016,\"journal\":{\"name\":\"Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi\",\"volume\":\"45 6\",\"pages\":\"577-585\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310802/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3760/cma.j.cn121090-20231218-00323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3760/cma.j.cn121090-20231218-00323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
[Effect and molecular mechanism of hesperadin-induced ferroptosis in chronic myeloid leukemia K562 cells].
Objective: To investigate the effect and molecular mechanism of hesperadin in inducing ferroptosis in chronic myeloid leukemia cell line K562 cells. Methods: The effects of hesperadin on the viability, proliferation, and migration of K562 cells were detected though CCK8, EDU-594, and Transwell assays, and the apoptotic rate of K562 cells was detected by flow cytometry. In addition, C11-BODIPY and FerroOrange were utilized to detect intracellular lipid peroxidation and Fe(2+) levels. Meanwhile, the expression levels of ferroptosis-associated protein solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) in cells were detected through Western blot. Lipid peroxidation and Fe(2+) levels were also detected after transfection of cells with SLC7A11 overexpression plasmid. Results: Hesperadin decreased cell viability in a dose-dependent manner with IC(50) of 0.544 μmol/L. Hesperadin concentrations of 0.4 and 0.8 μmol/L were selected for follow-up experiments. EDU-594, Transwell, and flow cytometry showed significantly decreased proliferation and migration rate of K562 cells after 0.4 and 0.8 μmol/L hesperadin treatment for 24 h, and the apoptosis rate was significantly increased compared with the control group (P<0.05). Western blot indicated a downregulated expression of the antiapoptotic protein Bcl-2 and an elevated expression of proapoptotic proteins Bax and Caspase-3. Moreover, hesperadin increased intracellular lipid peroxidation and Fe(2+) levels compared with the control treatment (P<0.05). The combination of ferroptosis inhibitor (Fer-1) and hesperadin could reverse the effect of hesperadin on K562 cells. The mRNA and protein levels of ferroptosis-related genes SLC7A11 and GPX4 were significantly decreased in the 0.8 μmol/L hesperadin-treated group (P<0.05). SLC7A11 overexpression can inhibit hesperadin effect and alleviate ferroptosis. Conclusion: Hesperadin can promote ferroptosis in K562 cells by regulating the SLC7A11/GPX4 axis.