{"title":"组氨酸代谢的改变是早期常染色体显性多囊肾病(adpkd)的一个特征。","authors":"Arlene Chapman, Peili Chen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Autosomal dominant polycystic kidney disease (ADPKD) is characterized by epithelial proliferation and progressive cyst enlargement. Using a non-targeted high-resolution metabolomics approach, we analyzed biofluids from 36 ADPKD and 18 healthy controls with estimated glomerular filtration rate (eGFR) > 60 ml/min to identify features specific to ADPKD or that associate with disease severity [eGFR or height-corrected total kidney volume (htTKV)]. Multiple pathways differed between ADPKD subjects and controls, with the histidine pathway being the most highly represented. Plasma histidine, urinary N-methylhistamine, methylimidazole-acetaldehyde, and imidazole-acetaldehyde, as well as 3-methylhistidine and anserine were increased, while plasma N-acetylhistamine and urinary imidazole-acetic acid were decreased in ADPKD compared to controls. In ADPKD, urinary histidine and a histidine derivative, urocanate (a precursor of glutamate), were significantly associated. HtTKV and eGFR were inversely associated with urinary glutamine and plasma 4-imidazolone-5-propionic acid, respectively. Supernatant from cultured human ADPKD renal cystic epithelia demonstrated increased aspartate and glutamate levels at 8 and 24 hours compared to primary tubular epithelia (p < 0.001). Following exposure over 48 hours to α-fluromethylhistidine, an inhibitor of histamine production, primary human <i>PKD1</i> cyst epithelia proliferation increased significantly from baseline (p < 0.01) and greater than non-cystic epithelia (p < 0.05). The histidine ammonia lyase inhibitor nitromethane reversed α-fluromethylhistidine-induced cyst epithelia proliferation indicating a role for glutamate in cyst growth. In conclusion, histidine metabolism is altered preferentially leading to glutamate production and epithelial proliferation in ADPKD and associates with disease severity.</p>","PeriodicalId":23186,"journal":{"name":"Transactions of the American Clinical and Climatological Association","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316905/pdf/","citationCount":"0","resultStr":"{\"title\":\"ALTERATIONS IN HISTIDINE METABOLISM IS A FEATURE OF EARLY AUTOSOMAL DOMINANT POLYCYSTIC KIDNEY DISEASE (ADPKD).\",\"authors\":\"Arlene Chapman, Peili Chen\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Autosomal dominant polycystic kidney disease (ADPKD) is characterized by epithelial proliferation and progressive cyst enlargement. Using a non-targeted high-resolution metabolomics approach, we analyzed biofluids from 36 ADPKD and 18 healthy controls with estimated glomerular filtration rate (eGFR) > 60 ml/min to identify features specific to ADPKD or that associate with disease severity [eGFR or height-corrected total kidney volume (htTKV)]. Multiple pathways differed between ADPKD subjects and controls, with the histidine pathway being the most highly represented. Plasma histidine, urinary N-methylhistamine, methylimidazole-acetaldehyde, and imidazole-acetaldehyde, as well as 3-methylhistidine and anserine were increased, while plasma N-acetylhistamine and urinary imidazole-acetic acid were decreased in ADPKD compared to controls. In ADPKD, urinary histidine and a histidine derivative, urocanate (a precursor of glutamate), were significantly associated. HtTKV and eGFR were inversely associated with urinary glutamine and plasma 4-imidazolone-5-propionic acid, respectively. Supernatant from cultured human ADPKD renal cystic epithelia demonstrated increased aspartate and glutamate levels at 8 and 24 hours compared to primary tubular epithelia (p < 0.001). Following exposure over 48 hours to α-fluromethylhistidine, an inhibitor of histamine production, primary human <i>PKD1</i> cyst epithelia proliferation increased significantly from baseline (p < 0.01) and greater than non-cystic epithelia (p < 0.05). The histidine ammonia lyase inhibitor nitromethane reversed α-fluromethylhistidine-induced cyst epithelia proliferation indicating a role for glutamate in cyst growth. In conclusion, histidine metabolism is altered preferentially leading to glutamate production and epithelial proliferation in ADPKD and associates with disease severity.</p>\",\"PeriodicalId\":23186,\"journal\":{\"name\":\"Transactions of the American Clinical and Climatological Association\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316905/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Clinical and Climatological Association\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Clinical and Climatological Association","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
ALTERATIONS IN HISTIDINE METABOLISM IS A FEATURE OF EARLY AUTOSOMAL DOMINANT POLYCYSTIC KIDNEY DISEASE (ADPKD).
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by epithelial proliferation and progressive cyst enlargement. Using a non-targeted high-resolution metabolomics approach, we analyzed biofluids from 36 ADPKD and 18 healthy controls with estimated glomerular filtration rate (eGFR) > 60 ml/min to identify features specific to ADPKD or that associate with disease severity [eGFR or height-corrected total kidney volume (htTKV)]. Multiple pathways differed between ADPKD subjects and controls, with the histidine pathway being the most highly represented. Plasma histidine, urinary N-methylhistamine, methylimidazole-acetaldehyde, and imidazole-acetaldehyde, as well as 3-methylhistidine and anserine were increased, while plasma N-acetylhistamine and urinary imidazole-acetic acid were decreased in ADPKD compared to controls. In ADPKD, urinary histidine and a histidine derivative, urocanate (a precursor of glutamate), were significantly associated. HtTKV and eGFR were inversely associated with urinary glutamine and plasma 4-imidazolone-5-propionic acid, respectively. Supernatant from cultured human ADPKD renal cystic epithelia demonstrated increased aspartate and glutamate levels at 8 and 24 hours compared to primary tubular epithelia (p < 0.001). Following exposure over 48 hours to α-fluromethylhistidine, an inhibitor of histamine production, primary human PKD1 cyst epithelia proliferation increased significantly from baseline (p < 0.01) and greater than non-cystic epithelia (p < 0.05). The histidine ammonia lyase inhibitor nitromethane reversed α-fluromethylhistidine-induced cyst epithelia proliferation indicating a role for glutamate in cyst growth. In conclusion, histidine metabolism is altered preferentially leading to glutamate production and epithelial proliferation in ADPKD and associates with disease severity.