Yuqing Lei , Adam Christian Naj , Hua Xu , Ruowang Li , Yong Chen
{"title":"平衡病历审核的工作量与 PRS 预测准确性的提高:实证研究。","authors":"Yuqing Lei , Adam Christian Naj , Hua Xu , Ruowang Li , Yong Chen","doi":"10.1016/j.jbi.2024.104705","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>Phenotypic misclassification in genetic association analyses can impact the accuracy of PRS-based prediction models. The bias reduction method proposed by Tong et al. (2019) has demonstrated its efficacy in reducing the effects of bias on the estimation of association parameters between genotype and phenotype while minimizing variance by employing chart reviews on a subset of the data for validating phenotypes, however its improvement of subsequent PRS prediction accuracy remains unclear. Our study aims to fill this gap by assessing the performance of simulated PRS models and estimating the optimal number of chart reviews needed for validation.</p></div><div><h3>Methods</h3><p>To comprehensively assess the efficacy of the bias reduction method proposed by Tong et al. in enhancing the accuracy of PRS-based prediction models, we simulated each phenotype under different correlation structures (an independent model, a weakly correlated model, a strongly correlated model) and introduced error-prone phenotypes using two distinct error mechanisms (differential and non-differential phenotyping errors). To facilitate this, we used genotype and phenotype data from 12 case-control datasets in the Alzheimer’s Disease Genetics Consortium (ADGC) to produce simulated phenotypes. The evaluation included analyses across various misclassification rates of original phenotypes as well as quantities of validation set. Additionally, we determined the median threshold, identifying the minimal validation size required for a meaningful improvement in the accuracy of PRS-based predictions across a broad spectrum.</p></div><div><h3>Results</h3><p>This simulation study demonstrated that incorporating chart review does not universally guarantee enhanced performance of PRS-based prediction models. Specifically, in scenarios with minimal misclassification rates and limited validation sizes, PRS models utilizing debiased regression coefficients demonstrated inferior predictive capabilities compared to models using error-prone phenotypes. Put differently, the effectiveness of the bias reduction method is contingent upon the misclassification rates of phenotypes and the size of the validation set employed during chart reviews. Notably, when dealing with datasets featuring higher misclassification rates, the advantages of utilizing this bias reduction method become more evident, requiring a smaller validation set to achieve better performance.</p></div><div><h3>Conclusion</h3><p>This study highlights the importance of choosing an appropriate validation set size to balance between the efforts of chart review and the gain in PRS prediction accuracy. Consequently, our study establishes a valuable guidance for validation planning, across a diverse array of sensitivity and specificity combinations.</p></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"157 ","pages":"Article 104705"},"PeriodicalIF":4.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Balancing the efforts of chart review and gains in PRS prediction accuracy: An empirical study\",\"authors\":\"Yuqing Lei , Adam Christian Naj , Hua Xu , Ruowang Li , Yong Chen\",\"doi\":\"10.1016/j.jbi.2024.104705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><p>Phenotypic misclassification in genetic association analyses can impact the accuracy of PRS-based prediction models. The bias reduction method proposed by Tong et al. (2019) has demonstrated its efficacy in reducing the effects of bias on the estimation of association parameters between genotype and phenotype while minimizing variance by employing chart reviews on a subset of the data for validating phenotypes, however its improvement of subsequent PRS prediction accuracy remains unclear. Our study aims to fill this gap by assessing the performance of simulated PRS models and estimating the optimal number of chart reviews needed for validation.</p></div><div><h3>Methods</h3><p>To comprehensively assess the efficacy of the bias reduction method proposed by Tong et al. in enhancing the accuracy of PRS-based prediction models, we simulated each phenotype under different correlation structures (an independent model, a weakly correlated model, a strongly correlated model) and introduced error-prone phenotypes using two distinct error mechanisms (differential and non-differential phenotyping errors). To facilitate this, we used genotype and phenotype data from 12 case-control datasets in the Alzheimer’s Disease Genetics Consortium (ADGC) to produce simulated phenotypes. The evaluation included analyses across various misclassification rates of original phenotypes as well as quantities of validation set. Additionally, we determined the median threshold, identifying the minimal validation size required for a meaningful improvement in the accuracy of PRS-based predictions across a broad spectrum.</p></div><div><h3>Results</h3><p>This simulation study demonstrated that incorporating chart review does not universally guarantee enhanced performance of PRS-based prediction models. Specifically, in scenarios with minimal misclassification rates and limited validation sizes, PRS models utilizing debiased regression coefficients demonstrated inferior predictive capabilities compared to models using error-prone phenotypes. Put differently, the effectiveness of the bias reduction method is contingent upon the misclassification rates of phenotypes and the size of the validation set employed during chart reviews. Notably, when dealing with datasets featuring higher misclassification rates, the advantages of utilizing this bias reduction method become more evident, requiring a smaller validation set to achieve better performance.</p></div><div><h3>Conclusion</h3><p>This study highlights the importance of choosing an appropriate validation set size to balance between the efforts of chart review and the gain in PRS prediction accuracy. Consequently, our study establishes a valuable guidance for validation planning, across a diverse array of sensitivity and specificity combinations.</p></div>\",\"PeriodicalId\":15263,\"journal\":{\"name\":\"Journal of Biomedical Informatics\",\"volume\":\"157 \",\"pages\":\"Article 104705\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1532046424001230\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046424001230","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Balancing the efforts of chart review and gains in PRS prediction accuracy: An empirical study
Objective
Phenotypic misclassification in genetic association analyses can impact the accuracy of PRS-based prediction models. The bias reduction method proposed by Tong et al. (2019) has demonstrated its efficacy in reducing the effects of bias on the estimation of association parameters between genotype and phenotype while minimizing variance by employing chart reviews on a subset of the data for validating phenotypes, however its improvement of subsequent PRS prediction accuracy remains unclear. Our study aims to fill this gap by assessing the performance of simulated PRS models and estimating the optimal number of chart reviews needed for validation.
Methods
To comprehensively assess the efficacy of the bias reduction method proposed by Tong et al. in enhancing the accuracy of PRS-based prediction models, we simulated each phenotype under different correlation structures (an independent model, a weakly correlated model, a strongly correlated model) and introduced error-prone phenotypes using two distinct error mechanisms (differential and non-differential phenotyping errors). To facilitate this, we used genotype and phenotype data from 12 case-control datasets in the Alzheimer’s Disease Genetics Consortium (ADGC) to produce simulated phenotypes. The evaluation included analyses across various misclassification rates of original phenotypes as well as quantities of validation set. Additionally, we determined the median threshold, identifying the minimal validation size required for a meaningful improvement in the accuracy of PRS-based predictions across a broad spectrum.
Results
This simulation study demonstrated that incorporating chart review does not universally guarantee enhanced performance of PRS-based prediction models. Specifically, in scenarios with minimal misclassification rates and limited validation sizes, PRS models utilizing debiased regression coefficients demonstrated inferior predictive capabilities compared to models using error-prone phenotypes. Put differently, the effectiveness of the bias reduction method is contingent upon the misclassification rates of phenotypes and the size of the validation set employed during chart reviews. Notably, when dealing with datasets featuring higher misclassification rates, the advantages of utilizing this bias reduction method become more evident, requiring a smaller validation set to achieve better performance.
Conclusion
This study highlights the importance of choosing an appropriate validation set size to balance between the efforts of chart review and the gain in PRS prediction accuracy. Consequently, our study establishes a valuable guidance for validation planning, across a diverse array of sensitivity and specificity combinations.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.