通过三角剖分限定外$k$平面图的树宽

Oksana Firman, Grzegorz Gutowski, Myroslav Kryven, Yuto Okada, Alexander Wolff
{"title":"通过三角剖分限定外$k$平面图的树宽","authors":"Oksana Firman, Grzegorz Gutowski, Myroslav Kryven, Yuto Okada, Alexander Wolff","doi":"arxiv-2408.04264","DOIUrl":null,"url":null,"abstract":"The treewidth is a structural parameter that measures the tree-likeness of a\ngraph. Many algorithmic and combinatorial results are expressed in terms of the\ntreewidth. In this paper, we study the treewidth of outer $k$-planar graphs,\nthat is, graphs that admit a straight-line drawing where all the vertices lie\non a circle, and every edge is crossed by at most $k$ other edges. Wood and Telle [New York J. Math., 2007] showed that every outer $k$-planar\ngraph has treewidth at most $3k + 11$ using so-called planar decompositions,\nand later, Auer et al. [Algorithmica, 2016] proved that the treewidth of outer\n$1$-planar graphs is at most $3$, which is tight. In this paper, we improve the general upper bound to $1.5k + 2$ and give a\ntight bound of $4$ for $k = 2$. We also establish a lower bound: we show that,\nfor every even $k$, there is an outer $k$-planar graph with treewidth $k+2$.\nOur new bound immediately implies a better bound on the cop number, which\nanswers an open question of Durocher et al. [GD 2023] in the affirmative. Our treewidth bound relies on a new and simple triangulation method for outer\n$k$-planar graphs that yields few crossings with graph edges per edge of the\ntriangulation. Our method also enables us to obtain a tight upper bound of $k +\n2$ for the separation number of outer $k$-planar graphs, improving an upper\nbound of $2k + 3$ by Chaplick et al. [GD 2017]. We also consider outer\nmin-$k$-planar graphs, a generalization of outer $k$-planar graphs, where we\nachieve smaller improvements.","PeriodicalId":501216,"journal":{"name":"arXiv - CS - Discrete Mathematics","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounding the Treewidth of Outer $k$-Planar Graphs via Triangulations\",\"authors\":\"Oksana Firman, Grzegorz Gutowski, Myroslav Kryven, Yuto Okada, Alexander Wolff\",\"doi\":\"arxiv-2408.04264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The treewidth is a structural parameter that measures the tree-likeness of a\\ngraph. Many algorithmic and combinatorial results are expressed in terms of the\\ntreewidth. In this paper, we study the treewidth of outer $k$-planar graphs,\\nthat is, graphs that admit a straight-line drawing where all the vertices lie\\non a circle, and every edge is crossed by at most $k$ other edges. Wood and Telle [New York J. Math., 2007] showed that every outer $k$-planar\\ngraph has treewidth at most $3k + 11$ using so-called planar decompositions,\\nand later, Auer et al. [Algorithmica, 2016] proved that the treewidth of outer\\n$1$-planar graphs is at most $3$, which is tight. In this paper, we improve the general upper bound to $1.5k + 2$ and give a\\ntight bound of $4$ for $k = 2$. We also establish a lower bound: we show that,\\nfor every even $k$, there is an outer $k$-planar graph with treewidth $k+2$.\\nOur new bound immediately implies a better bound on the cop number, which\\nanswers an open question of Durocher et al. [GD 2023] in the affirmative. Our treewidth bound relies on a new and simple triangulation method for outer\\n$k$-planar graphs that yields few crossings with graph edges per edge of the\\ntriangulation. Our method also enables us to obtain a tight upper bound of $k +\\n2$ for the separation number of outer $k$-planar graphs, improving an upper\\nbound of $2k + 3$ by Chaplick et al. [GD 2017]. We also consider outer\\nmin-$k$-planar graphs, a generalization of outer $k$-planar graphs, where we\\nachieve smaller improvements.\",\"PeriodicalId\":501216,\"journal\":{\"name\":\"arXiv - CS - Discrete Mathematics\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

树宽(treewidth)是一个结构参数,用于衡量图的树状相似性。许多算法和组合结果都用树宽表示。本文研究的是外$k$平面图的树宽,即允许直线画法的图,所有顶点都位于一个圆上,且每条边最多与$k$其他边交叉。Wood 和 Telle [New York J. Math., 2007]利用所谓的平面分解,证明了每个外$k$-平面图的树宽最多为 3k + 11$,后来,Auer 等人 [Algorithmica, 2016]证明了外$1$-平面图的树宽最多为 3$,这是很严密的。在本文中,我们将一般上界改进为 1.5k + 2$,并给出了 k = 2$ 时的 4$ight 界。我们还建立了一个下界:我们证明,对于每一个偶数 $k$,都存在一个树宽为 $k+2$ 的外$k$平面图。我们的新界值立即意味着对 cop 数的一个更好的界值,从而肯定地回答了 Durocher 等人[GD 2023]的一个未决问题。我们的树宽界值依赖于一种针对外$k$平面图的新的简单三角剖分方法,这种方法能使三角剖分的每条边与图边产生很少的交叉。我们的方法还使我们获得了外$k$-平面图分离数的严格上限$k +2$,改进了 Chaplick 等人的上限$2k +3$[GD 2017]。我们还考虑了外$k$平面图(outermin-$k$-planar graphs),它是外$k$平面图的广义化,我们在这方面取得的改进较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounding the Treewidth of Outer $k$-Planar Graphs via Triangulations
The treewidth is a structural parameter that measures the tree-likeness of a graph. Many algorithmic and combinatorial results are expressed in terms of the treewidth. In this paper, we study the treewidth of outer $k$-planar graphs, that is, graphs that admit a straight-line drawing where all the vertices lie on a circle, and every edge is crossed by at most $k$ other edges. Wood and Telle [New York J. Math., 2007] showed that every outer $k$-planar graph has treewidth at most $3k + 11$ using so-called planar decompositions, and later, Auer et al. [Algorithmica, 2016] proved that the treewidth of outer $1$-planar graphs is at most $3$, which is tight. In this paper, we improve the general upper bound to $1.5k + 2$ and give a tight bound of $4$ for $k = 2$. We also establish a lower bound: we show that, for every even $k$, there is an outer $k$-planar graph with treewidth $k+2$. Our new bound immediately implies a better bound on the cop number, which answers an open question of Durocher et al. [GD 2023] in the affirmative. Our treewidth bound relies on a new and simple triangulation method for outer $k$-planar graphs that yields few crossings with graph edges per edge of the triangulation. Our method also enables us to obtain a tight upper bound of $k + 2$ for the separation number of outer $k$-planar graphs, improving an upper bound of $2k + 3$ by Chaplick et al. [GD 2017]. We also consider outer min-$k$-planar graphs, a generalization of outer $k$-planar graphs, where we achieve smaller improvements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信