论法诺流形上锥形凯勒-爱因斯坦度量的存在性

IF 0.7 4区 数学 Q2 MATHEMATICS
Jiawei Liu
{"title":"论法诺流形上锥形凯勒-爱因斯坦度量的存在性","authors":"Jiawei Liu","doi":"10.4310/cag.2023.v31.n8.a7","DOIUrl":null,"url":null,"abstract":"In this paper, by using smooth approximation, we give a new proof of Donaldson’s existence conjecture that there exist conical Kähler–Einstein metrics with positive Ricci curvatures on Fano manifolds.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":"7 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the existence of the conical Kähler–Einstein metrics on Fano manifolds\",\"authors\":\"Jiawei Liu\",\"doi\":\"10.4310/cag.2023.v31.n8.a7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, by using smooth approximation, we give a new proof of Donaldson’s existence conjecture that there exist conical Kähler–Einstein metrics with positive Ricci curvatures on Fano manifolds.\",\"PeriodicalId\":50662,\"journal\":{\"name\":\"Communications in Analysis and Geometry\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cag.2023.v31.n8.a7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2023.v31.n8.a7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文利用平滑近似的方法,对唐纳森的存在性猜想给出了新的证明,即在法诺流形上存在具有正里奇曲率的锥形凯勒-爱因斯坦度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the existence of the conical Kähler–Einstein metrics on Fano manifolds
In this paper, by using smooth approximation, we give a new proof of Donaldson’s existence conjecture that there exist conical Kähler–Einstein metrics with positive Ricci curvatures on Fano manifolds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信