{"title":"论芬斯勒流形子流形的切点","authors":"Aritra Bhowmick, Sachchidanand Prasad","doi":"10.1007/s12220-024-01751-1","DOIUrl":null,"url":null,"abstract":"<p>In this article, we investigate the cut locus of closed (not necessarily compact) submanifolds in a forward complete Finsler manifold. We explore the deformation and characterization of the cut locus, extending the results of Basu and Prasad (Algebr Geom Topol 23(9):4185–4233, 2023). Given a submanifold <i>N</i>, we consider an <i>N</i>-geodesic loop as an <i>N</i>-geodesic starting and ending in <i>N</i>, possibly at different points. This class of geodesics were studied by Omori (J Differ Geom 2:233–252, 1968). We obtain a generalization of Klingenberg’s lemma for closed geodesics (Klingenberg in: Ann Math 2(69):654–666, 1959). for <i>N</i>-geodesic loops in the reversible Finsler setting.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Cut Locus of Submanifolds of a Finsler Manifold\",\"authors\":\"Aritra Bhowmick, Sachchidanand Prasad\",\"doi\":\"10.1007/s12220-024-01751-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we investigate the cut locus of closed (not necessarily compact) submanifolds in a forward complete Finsler manifold. We explore the deformation and characterization of the cut locus, extending the results of Basu and Prasad (Algebr Geom Topol 23(9):4185–4233, 2023). Given a submanifold <i>N</i>, we consider an <i>N</i>-geodesic loop as an <i>N</i>-geodesic starting and ending in <i>N</i>, possibly at different points. This class of geodesics were studied by Omori (J Differ Geom 2:233–252, 1968). We obtain a generalization of Klingenberg’s lemma for closed geodesics (Klingenberg in: Ann Math 2(69):654–666, 1959). for <i>N</i>-geodesic loops in the reversible Finsler setting.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01751-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01751-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在这篇文章中,我们研究了前向完全芬斯勒流形中封闭(不一定紧凑)子流形的切点。我们探讨了切点的变形和特征,扩展了巴苏和普拉萨德(Algebr Geom Topol 23(9):4185-4233, 2023)的成果。给定子曲面 N,我们将 N 射线环视为起于和止于 N 的 N 射线,可能在不同的点。大森(Omori)曾研究过这类大地线(J Differ Geom 2:233-252, 1968)。我们得到了克林根伯格关于闭合大地线的通解(Klingenberg in:在可逆 Finsler 设置中的 N-大地环。
On the Cut Locus of Submanifolds of a Finsler Manifold
In this article, we investigate the cut locus of closed (not necessarily compact) submanifolds in a forward complete Finsler manifold. We explore the deformation and characterization of the cut locus, extending the results of Basu and Prasad (Algebr Geom Topol 23(9):4185–4233, 2023). Given a submanifold N, we consider an N-geodesic loop as an N-geodesic starting and ending in N, possibly at different points. This class of geodesics were studied by Omori (J Differ Geom 2:233–252, 1968). We obtain a generalization of Klingenberg’s lemma for closed geodesics (Klingenberg in: Ann Math 2(69):654–666, 1959). for N-geodesic loops in the reversible Finsler setting.