三维各向异性 MHD 方程的稳定性和最佳衰减

IF 1 3区 数学 Q1 MATHEMATICS
Wan-Rong Yang, Mei Ma
{"title":"三维各向异性 MHD 方程的稳定性和最佳衰减","authors":"Wan-Rong Yang, Mei Ma","doi":"10.1007/s40840-024-01748-7","DOIUrl":null,"url":null,"abstract":"<p>This paper focuses on the stability and decay rates of solutions to the three dimensional anisotropic magnetohydrodynamic equations with horizontal velocity dissipation and magnetic damping phenomenon. By fully exploiting the structure of the system, the energy methods and the method of bootstrapping argument, we prove the global stability of solutions to this system with initial data small in <span>\\(H^{3}(\\mathbb {R}^{3})\\)</span>. Furthermore, we make use of the integral representation approach to obtain the optimal decay rates of these global solutions and their derivatives. This result along with its proof offers an effective approach to the large-time behavior on partially dissipated systems and reveals the stabilizing phenomenon exhibited by electrically conducting fluids.</p>","PeriodicalId":50718,"journal":{"name":"Bulletin of the Malaysian Mathematical Sciences Society","volume":"20 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability and Optimal Decay for the 3D Anisotropic MHD Equations\",\"authors\":\"Wan-Rong Yang, Mei Ma\",\"doi\":\"10.1007/s40840-024-01748-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper focuses on the stability and decay rates of solutions to the three dimensional anisotropic magnetohydrodynamic equations with horizontal velocity dissipation and magnetic damping phenomenon. By fully exploiting the structure of the system, the energy methods and the method of bootstrapping argument, we prove the global stability of solutions to this system with initial data small in <span>\\\\(H^{3}(\\\\mathbb {R}^{3})\\\\)</span>. Furthermore, we make use of the integral representation approach to obtain the optimal decay rates of these global solutions and their derivatives. This result along with its proof offers an effective approach to the large-time behavior on partially dissipated systems and reveals the stabilizing phenomenon exhibited by electrically conducting fluids.</p>\",\"PeriodicalId\":50718,\"journal\":{\"name\":\"Bulletin of the Malaysian Mathematical Sciences Society\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Malaysian Mathematical Sciences Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40840-024-01748-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Malaysian Mathematical Sciences Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40840-024-01748-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究具有水平速度耗散和磁阻尼现象的三维各向异性磁流体动力学方程解的稳定性和衰减率。通过充分利用系统结构、能量方法和引导论证方法,我们证明了初始数据小于 \(H^{3}(\mathbb {R}^{3})\) 的该系统解的全局稳定性。此外,我们还利用积分表示法得到了这些全局解及其导数的最优衰减率。这一结果及其证明为部分耗散系统的大时间行为提供了有效方法,并揭示了导电流体所表现出的稳定现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability and Optimal Decay for the 3D Anisotropic MHD Equations

This paper focuses on the stability and decay rates of solutions to the three dimensional anisotropic magnetohydrodynamic equations with horizontal velocity dissipation and magnetic damping phenomenon. By fully exploiting the structure of the system, the energy methods and the method of bootstrapping argument, we prove the global stability of solutions to this system with initial data small in \(H^{3}(\mathbb {R}^{3})\). Furthermore, we make use of the integral representation approach to obtain the optimal decay rates of these global solutions and their derivatives. This result along with its proof offers an effective approach to the large-time behavior on partially dissipated systems and reveals the stabilizing phenomenon exhibited by electrically conducting fluids.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
8.30%
发文量
176
审稿时长
3 months
期刊介绍: This journal publishes original research articles and expository survey articles in all branches of mathematics. Recent issues have included articles on such topics as Spectral synthesis for the operator space projective tensor product of C*-algebras; Topological structures on LA-semigroups; Implicit iteration methods for variational inequalities in Banach spaces; and The Quarter-Sweep Geometric Mean method for solving second kind linear fredholm integral equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信