索洛维还原性意味着 S2a 还原性

Ivan Titov
{"title":"索洛维还原性意味着 S2a 还原性","authors":"Ivan Titov","doi":"arxiv-2408.04074","DOIUrl":null,"url":null,"abstract":"The original notion of Solovay reducibility was introduced by Robert M.\nSolovay (unpublished notes) in 1975 as a measure of relative randomness. The S2a-reducibility introduced by Xizhong Zheng and Robert Rettinger\n(DOI:10.1007/978-3-540-27798-9_39) in 2004 is a modification of Solovay\nreducibility suitable for computably approximable (c.a.) reals. We demonstrate that Solovay reducibility implies S2a-reducibility on the set\nof c.a. reals, even with the same constant, but not vice versa.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solovay reducibility implies S2a-reducibility\",\"authors\":\"Ivan Titov\",\"doi\":\"arxiv-2408.04074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The original notion of Solovay reducibility was introduced by Robert M.\\nSolovay (unpublished notes) in 1975 as a measure of relative randomness. The S2a-reducibility introduced by Xizhong Zheng and Robert Rettinger\\n(DOI:10.1007/978-3-540-27798-9_39) in 2004 is a modification of Solovay\\nreducibility suitable for computably approximable (c.a.) reals. We demonstrate that Solovay reducibility implies S2a-reducibility on the set\\nof c.a. reals, even with the same constant, but not vice versa.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

索洛维可还原性的最初概念是由罗伯特-索洛维(Robert M.Solovay)(未发表的笔记)于1975年提出的,作为一种相对随机性的度量。郑锡忠和罗伯特-雷廷格(DOI:10.1007/978-3-540-27798-9_39)于 2004 年提出的 S2a-reducibility 是对索洛维可简化性的修改,适用于可计算近似(c.a. )的实数。我们证明了索洛维可简化性意味着 c.a. 复数集上的 S2a 可简化性,即使使用同一个常数也是如此,反之亦然。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solovay reducibility implies S2a-reducibility
The original notion of Solovay reducibility was introduced by Robert M. Solovay (unpublished notes) in 1975 as a measure of relative randomness. The S2a-reducibility introduced by Xizhong Zheng and Robert Rettinger (DOI:10.1007/978-3-540-27798-9_39) in 2004 is a modification of Solovay reducibility suitable for computably approximable (c.a.) reals. We demonstrate that Solovay reducibility implies S2a-reducibility on the set of c.a. reals, even with the same constant, but not vice versa.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信