{"title":"研究马氏体相变温度和居里温差对掺硅 Ni-Mn-In Heusler 合金在低磁场下的磁性和磁致性的影响","authors":"E Kavak, M M Cicek, S Saritas and B Emre","doi":"10.1088/1402-4896/ad68d9","DOIUrl":null,"url":null,"abstract":"This study examines the impact of substituting Si for Mn on the structural, magnetic, and magnetocaloric properties of Ni43Mn46−xSixIn11 (x = 0.3 and 0.6) alloys. To this end, a range of analytical techniques are employed, including scanning electron microscopy (SEM), room temperature x-ray powder diffraction (XRD), and magnetization measurements. Above the martensitic transition temperature, the Ni43Mn46−xSixIn11 alloys exhibit cubic L21 (space group FM-3M). Below this temperature they adopt a tetragonal L10 (space group I4/mmm). The martensitic transition temperature decreased when Si is substituted for Mn. The magnetic field-induced entropy change is calculated from magnetic field-dependent magnetization measurements using Maxwell’s equations. The maximum magnetic field-induced entropy changes for Ni43.16Mn45.56Si0.29In11 and Ni43.51Mn44.82Si0.59In11 alloys are calculated 8.20 J kg−1K−1 and 3.15 J kg−1 K−1, respectively, in the vicinity of the magnetostructural phase transition for a magnetic field change of 18 kOe. It is demonstrated that the temperature differential between the high-temperature austenite phase's Curie point (TC) and the mean martensitic transformation temperature (TM), namely (TM-TC), influences the martensitic transition temperatures and, consequently, on the magnetic field-induced entropy change (ΔSM).","PeriodicalId":20067,"journal":{"name":"Physica Scripta","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the effect of martensitic phase transition temperature and Curie temperature difference on magnetic and magnetocaloric properties under low magnetic field on Si-doped Ni-Mn-In Heusler alloys\",\"authors\":\"E Kavak, M M Cicek, S Saritas and B Emre\",\"doi\":\"10.1088/1402-4896/ad68d9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examines the impact of substituting Si for Mn on the structural, magnetic, and magnetocaloric properties of Ni43Mn46−xSixIn11 (x = 0.3 and 0.6) alloys. To this end, a range of analytical techniques are employed, including scanning electron microscopy (SEM), room temperature x-ray powder diffraction (XRD), and magnetization measurements. Above the martensitic transition temperature, the Ni43Mn46−xSixIn11 alloys exhibit cubic L21 (space group FM-3M). Below this temperature they adopt a tetragonal L10 (space group I4/mmm). The martensitic transition temperature decreased when Si is substituted for Mn. The magnetic field-induced entropy change is calculated from magnetic field-dependent magnetization measurements using Maxwell’s equations. The maximum magnetic field-induced entropy changes for Ni43.16Mn45.56Si0.29In11 and Ni43.51Mn44.82Si0.59In11 alloys are calculated 8.20 J kg−1K−1 and 3.15 J kg−1 K−1, respectively, in the vicinity of the magnetostructural phase transition for a magnetic field change of 18 kOe. It is demonstrated that the temperature differential between the high-temperature austenite phase's Curie point (TC) and the mean martensitic transformation temperature (TM), namely (TM-TC), influences the martensitic transition temperatures and, consequently, on the magnetic field-induced entropy change (ΔSM).\",\"PeriodicalId\":20067,\"journal\":{\"name\":\"Physica Scripta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Scripta\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1402-4896/ad68d9\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Scripta","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1402-4896/ad68d9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigation of the effect of martensitic phase transition temperature and Curie temperature difference on magnetic and magnetocaloric properties under low magnetic field on Si-doped Ni-Mn-In Heusler alloys
This study examines the impact of substituting Si for Mn on the structural, magnetic, and magnetocaloric properties of Ni43Mn46−xSixIn11 (x = 0.3 and 0.6) alloys. To this end, a range of analytical techniques are employed, including scanning electron microscopy (SEM), room temperature x-ray powder diffraction (XRD), and magnetization measurements. Above the martensitic transition temperature, the Ni43Mn46−xSixIn11 alloys exhibit cubic L21 (space group FM-3M). Below this temperature they adopt a tetragonal L10 (space group I4/mmm). The martensitic transition temperature decreased when Si is substituted for Mn. The magnetic field-induced entropy change is calculated from magnetic field-dependent magnetization measurements using Maxwell’s equations. The maximum magnetic field-induced entropy changes for Ni43.16Mn45.56Si0.29In11 and Ni43.51Mn44.82Si0.59In11 alloys are calculated 8.20 J kg−1K−1 and 3.15 J kg−1 K−1, respectively, in the vicinity of the magnetostructural phase transition for a magnetic field change of 18 kOe. It is demonstrated that the temperature differential between the high-temperature austenite phase's Curie point (TC) and the mean martensitic transformation temperature (TM), namely (TM-TC), influences the martensitic transition temperatures and, consequently, on the magnetic field-induced entropy change (ΔSM).
期刊介绍:
Physica Scripta is an international journal for original research in any branch of experimental and theoretical physics. Articles will be considered in any of the following topics, and interdisciplinary topics involving physics are also welcomed:
-Atomic, molecular and optical physics-
Plasma physics-
Condensed matter physics-
Mathematical physics-
Astrophysics-
High energy physics-
Nuclear physics-
Nonlinear physics.
The journal aims to increase the visibility and accessibility of research to the wider physical sciences community. Articles on topics of broad interest are encouraged and submissions in more specialist fields should endeavour to include reference to the wider context of their research in the introduction.