利用 ReactNET 的遥测和 ML 技术实现需求感知网络系统

Seyed Milad Miri, Stefan Schmid, Habib Mostafaei
{"title":"利用 ReactNET 的遥测和 ML 技术实现需求感知网络系统","authors":"Seyed Milad Miri, Stefan Schmid, Habib Mostafaei","doi":"arxiv-2408.02057","DOIUrl":null,"url":null,"abstract":"Emerging network applications ranging from video streaming to\nvirtual/augmented reality need to provide stringent quality-of-service (QoS)\nguarantees in complex and dynamic environments with shared resources. A\npromising approach to meeting these requirements is to automate complex network\noperations and create self-adjusting networks. These networks should\nautomatically gather contextual information, analyze how to efficiently ensure\nQoS requirements, and adapt accordingly. This paper presents ReactNET, a\nself-adjusting networked system designed to achieve this vision by leveraging\nemerging network programmability and machine learning techniques.\nProgrammability empowers ReactNET by providing fine-grained telemetry\ninformation, while machine learning-based classification techniques enable the\nsystem to learn and adjust the network to changing conditions. Our preliminary\nimplementation of ReactNET in P4 and Python demonstrates its effectiveness in\nvideo streaming applications.","PeriodicalId":501280,"journal":{"name":"arXiv - CS - Networking and Internet Architecture","volume":"126 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Demand-aware Networked System Using Telemetry and ML with ReactNET\",\"authors\":\"Seyed Milad Miri, Stefan Schmid, Habib Mostafaei\",\"doi\":\"arxiv-2408.02057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emerging network applications ranging from video streaming to\\nvirtual/augmented reality need to provide stringent quality-of-service (QoS)\\nguarantees in complex and dynamic environments with shared resources. A\\npromising approach to meeting these requirements is to automate complex network\\noperations and create self-adjusting networks. These networks should\\nautomatically gather contextual information, analyze how to efficiently ensure\\nQoS requirements, and adapt accordingly. This paper presents ReactNET, a\\nself-adjusting networked system designed to achieve this vision by leveraging\\nemerging network programmability and machine learning techniques.\\nProgrammability empowers ReactNET by providing fine-grained telemetry\\ninformation, while machine learning-based classification techniques enable the\\nsystem to learn and adjust the network to changing conditions. Our preliminary\\nimplementation of ReactNET in P4 and Python demonstrates its effectiveness in\\nvideo streaming applications.\",\"PeriodicalId\":501280,\"journal\":{\"name\":\"arXiv - CS - Networking and Internet Architecture\",\"volume\":\"126 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Networking and Internet Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Networking and Internet Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从视频流到虚拟/增强现实等新兴网络应用需要在复杂多变的共享资源环境中提供严格的服务质量(QoS)保证。满足这些要求的最佳方法是实现复杂网络操作的自动化,并创建可自我调整的网络。这些网络应自动收集上下文信息,分析如何有效确保 QoS 要求,并做出相应调整。本文介绍的 ReactNET 是一种自我调节网络系统,旨在利用新兴的网络可编程性和机器学习技术实现这一愿景。可编程性通过提供细粒度遥测信息增强了 ReactNET 的能力,而基于机器学习的分类技术则使该系统能够根据不断变化的条件学习和调整网络。我们在 P4 和 Python 中初步实现了 ReactNET,证明了它在视频流应用中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Demand-aware Networked System Using Telemetry and ML with ReactNET
Emerging network applications ranging from video streaming to virtual/augmented reality need to provide stringent quality-of-service (QoS) guarantees in complex and dynamic environments with shared resources. A promising approach to meeting these requirements is to automate complex network operations and create self-adjusting networks. These networks should automatically gather contextual information, analyze how to efficiently ensure QoS requirements, and adapt accordingly. This paper presents ReactNET, a self-adjusting networked system designed to achieve this vision by leveraging emerging network programmability and machine learning techniques. Programmability empowers ReactNET by providing fine-grained telemetry information, while machine learning-based classification techniques enable the system to learn and adjust the network to changing conditions. Our preliminary implementation of ReactNET in P4 and Python demonstrates its effectiveness in video streaming applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信