关于不规则黎曼-希尔伯特对应关系

Andrea D'Agnolo, Masaki Kashiwara
{"title":"关于不规则黎曼-希尔伯特对应关系","authors":"Andrea D'Agnolo, Masaki Kashiwara","doi":"arxiv-2408.04260","DOIUrl":null,"url":null,"abstract":"The original Riemann-Hilbert problem asks to find a Fuchsian ordinary\ndifferential equation with prescribed singularities and monodromy in the\ncomplex line. In the early 1980's Kashiwara solved a generalized version of the\nproblem, valid on complex manifolds of any dimension. He presented it as a\ncorrespondence between regular holonomic D-modules and perverse sheaves. The analogous problem where one drops the regularity condition remained open\nfor about thirty years. We solved it in the paper that received a 2024\nFrontiers of Science Award. Our construction requires in particular an\nenhancement of the category of perverse sheaves. Here, using some examples in\ndimension one, we wish to convey the gist of the main ingredients used in our\nwork. This is a written account of a talk given by the first named author at the\nInternational Congress of Basic Sciences on July 2024 in Beijing.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the irregular Riemann-Hilbert correspondence\",\"authors\":\"Andrea D'Agnolo, Masaki Kashiwara\",\"doi\":\"arxiv-2408.04260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The original Riemann-Hilbert problem asks to find a Fuchsian ordinary\\ndifferential equation with prescribed singularities and monodromy in the\\ncomplex line. In the early 1980's Kashiwara solved a generalized version of the\\nproblem, valid on complex manifolds of any dimension. He presented it as a\\ncorrespondence between regular holonomic D-modules and perverse sheaves. The analogous problem where one drops the regularity condition remained open\\nfor about thirty years. We solved it in the paper that received a 2024\\nFrontiers of Science Award. Our construction requires in particular an\\nenhancement of the category of perverse sheaves. Here, using some examples in\\ndimension one, we wish to convey the gist of the main ingredients used in our\\nwork. This is a written account of a talk given by the first named author at the\\nInternational Congress of Basic Sciences on July 2024 in Beijing.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最初的黎曼-希尔伯特(Riemann-Hilbert)问题要求找到一个在复线上具有规定奇点和单色性的富奇异常微分方程。20 世纪 80 年代初,柏原(Kashiwara)解决了这个问题的一个广义版本,它在任何维度的复流形上都有效。他将其表述为正则整体 D 模块与反向剪切之间的对应关系。放弃正则性条件的类似问题,大约三十年来一直悬而未决。我们在获得 2024 年科学前沿奖的论文中解决了这个问题。我们的构造尤其需要加强反向剪切范畴。在这里,我们希望用一些一维的例子来表达我们工作中所使用的主要成分的要点。本文是第一作者于2024年7月在北京举行的国际基础科学大会上的演讲稿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the irregular Riemann-Hilbert correspondence
The original Riemann-Hilbert problem asks to find a Fuchsian ordinary differential equation with prescribed singularities and monodromy in the complex line. In the early 1980's Kashiwara solved a generalized version of the problem, valid on complex manifolds of any dimension. He presented it as a correspondence between regular holonomic D-modules and perverse sheaves. The analogous problem where one drops the regularity condition remained open for about thirty years. We solved it in the paper that received a 2024 Frontiers of Science Award. Our construction requires in particular an enhancement of the category of perverse sheaves. Here, using some examples in dimension one, we wish to convey the gist of the main ingredients used in our work. This is a written account of a talk given by the first named author at the International Congress of Basic Sciences on July 2024 in Beijing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信