{"title":"完全对偶的交集","authors":"Qikai Wang, Haiyan Zhu","doi":"arxiv-2408.01922","DOIUrl":null,"url":null,"abstract":"Given two (hereditary) complete cotorsion pairs\n$(\\mathcal{X}_1,\\mathcal{Y}_1)$ and $(\\mathcal{X}_2,\\mathcal{Y}_2)$ in an exact\ncategory with $\\mathcal{X}_1\\subseteq \\mathcal{Y}_2$, we prove that $\\left({\\rm\nSmd}\\langle \\mathcal{X}_1,\\mathcal{X}_2 \\rangle,\\mathcal{Y}_1\\cap\n\\mathcal{Y}_2\\right)$ is also a (hereditary) complete cotorsion pair, where\n${\\rm Smd}\\langle \\mathcal{X}_1,\\mathcal{X}_2 \\rangle$ is the class of direct\nsummands of extension of $\\mathcal{X}_1$ and $\\mathcal{X}_2$. As an\napplication, we construct complete cotorsion pairs, such as\n$(^\\perp\\mathcal{GI}^{\\leqslant n},\\mathcal{GI}^{\\leqslant n})$, where\n$\\mathcal{GI}^{\\leqslant n}$ is the class of modules of Gorenstein injective\ndimension at most $n$. And we also characterize the left orthogonal class of\nexact complexes of injective modules and the classes of modules with finite\nGorenstein projective, Gorenstein flat, and PGF dimensions.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intersection of complete cotorsion pairs\",\"authors\":\"Qikai Wang, Haiyan Zhu\",\"doi\":\"arxiv-2408.01922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given two (hereditary) complete cotorsion pairs\\n$(\\\\mathcal{X}_1,\\\\mathcal{Y}_1)$ and $(\\\\mathcal{X}_2,\\\\mathcal{Y}_2)$ in an exact\\ncategory with $\\\\mathcal{X}_1\\\\subseteq \\\\mathcal{Y}_2$, we prove that $\\\\left({\\\\rm\\nSmd}\\\\langle \\\\mathcal{X}_1,\\\\mathcal{X}_2 \\\\rangle,\\\\mathcal{Y}_1\\\\cap\\n\\\\mathcal{Y}_2\\\\right)$ is also a (hereditary) complete cotorsion pair, where\\n${\\\\rm Smd}\\\\langle \\\\mathcal{X}_1,\\\\mathcal{X}_2 \\\\rangle$ is the class of direct\\nsummands of extension of $\\\\mathcal{X}_1$ and $\\\\mathcal{X}_2$. As an\\napplication, we construct complete cotorsion pairs, such as\\n$(^\\\\perp\\\\mathcal{GI}^{\\\\leqslant n},\\\\mathcal{GI}^{\\\\leqslant n})$, where\\n$\\\\mathcal{GI}^{\\\\leqslant n}$ is the class of modules of Gorenstein injective\\ndimension at most $n$. And we also characterize the left orthogonal class of\\nexact complexes of injective modules and the classes of modules with finite\\nGorenstein projective, Gorenstein flat, and PGF dimensions.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.01922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Given two (hereditary) complete cotorsion pairs
$(\mathcal{X}_1,\mathcal{Y}_1)$ and $(\mathcal{X}_2,\mathcal{Y}_2)$ in an exact
category with $\mathcal{X}_1\subseteq \mathcal{Y}_2$, we prove that $\left({\rm
Smd}\langle \mathcal{X}_1,\mathcal{X}_2 \rangle,\mathcal{Y}_1\cap
\mathcal{Y}_2\right)$ is also a (hereditary) complete cotorsion pair, where
${\rm Smd}\langle \mathcal{X}_1,\mathcal{X}_2 \rangle$ is the class of direct
summands of extension of $\mathcal{X}_1$ and $\mathcal{X}_2$. As an
application, we construct complete cotorsion pairs, such as
$(^\perp\mathcal{GI}^{\leqslant n},\mathcal{GI}^{\leqslant n})$, where
$\mathcal{GI}^{\leqslant n}$ is the class of modules of Gorenstein injective
dimension at most $n$. And we also characterize the left orthogonal class of
exact complexes of injective modules and the classes of modules with finite
Gorenstein projective, Gorenstein flat, and PGF dimensions.