完全对偶的交集

Qikai Wang, Haiyan Zhu
{"title":"完全对偶的交集","authors":"Qikai Wang, Haiyan Zhu","doi":"arxiv-2408.01922","DOIUrl":null,"url":null,"abstract":"Given two (hereditary) complete cotorsion pairs\n$(\\mathcal{X}_1,\\mathcal{Y}_1)$ and $(\\mathcal{X}_2,\\mathcal{Y}_2)$ in an exact\ncategory with $\\mathcal{X}_1\\subseteq \\mathcal{Y}_2$, we prove that $\\left({\\rm\nSmd}\\langle \\mathcal{X}_1,\\mathcal{X}_2 \\rangle,\\mathcal{Y}_1\\cap\n\\mathcal{Y}_2\\right)$ is also a (hereditary) complete cotorsion pair, where\n${\\rm Smd}\\langle \\mathcal{X}_1,\\mathcal{X}_2 \\rangle$ is the class of direct\nsummands of extension of $\\mathcal{X}_1$ and $\\mathcal{X}_2$. As an\napplication, we construct complete cotorsion pairs, such as\n$(^\\perp\\mathcal{GI}^{\\leqslant n},\\mathcal{GI}^{\\leqslant n})$, where\n$\\mathcal{GI}^{\\leqslant n}$ is the class of modules of Gorenstein injective\ndimension at most $n$. And we also characterize the left orthogonal class of\nexact complexes of injective modules and the classes of modules with finite\nGorenstein projective, Gorenstein flat, and PGF dimensions.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intersection of complete cotorsion pairs\",\"authors\":\"Qikai Wang, Haiyan Zhu\",\"doi\":\"arxiv-2408.01922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given two (hereditary) complete cotorsion pairs\\n$(\\\\mathcal{X}_1,\\\\mathcal{Y}_1)$ and $(\\\\mathcal{X}_2,\\\\mathcal{Y}_2)$ in an exact\\ncategory with $\\\\mathcal{X}_1\\\\subseteq \\\\mathcal{Y}_2$, we prove that $\\\\left({\\\\rm\\nSmd}\\\\langle \\\\mathcal{X}_1,\\\\mathcal{X}_2 \\\\rangle,\\\\mathcal{Y}_1\\\\cap\\n\\\\mathcal{Y}_2\\\\right)$ is also a (hereditary) complete cotorsion pair, where\\n${\\\\rm Smd}\\\\langle \\\\mathcal{X}_1,\\\\mathcal{X}_2 \\\\rangle$ is the class of direct\\nsummands of extension of $\\\\mathcal{X}_1$ and $\\\\mathcal{X}_2$. As an\\napplication, we construct complete cotorsion pairs, such as\\n$(^\\\\perp\\\\mathcal{GI}^{\\\\leqslant n},\\\\mathcal{GI}^{\\\\leqslant n})$, where\\n$\\\\mathcal{GI}^{\\\\leqslant n}$ is the class of modules of Gorenstein injective\\ndimension at most $n$. And we also characterize the left orthogonal class of\\nexact complexes of injective modules and the classes of modules with finite\\nGorenstein projective, Gorenstein flat, and PGF dimensions.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.01922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定两个(遗传的)完全扭转对$(\mathcal{X}_1,\mathcal{Y}_1)$ 和$(\mathcal{X}_2,\mathcal{Y}_2)$ 在一个精确类别中,有$\mathcal{X}_1(子集) \mathcal{Y}_2$,我们证明$left({rmSmd}\langle \mathcal{X}_1、\其中${rm Smd}\langle \mathcal{X}_1,\mathcal{X}_2 \rangle$是$\mathcal{X}_1$和$\mathcal{X}_2$的外延的直接和的类。作为应用,我们构造了完整的反转对,例如$(^\perp\mathcal{GI}^{leqslant n},\mathcal{GI}^{leqslant n})$,其中$\mathcal{GI}^{leqslant n}$是哥伦布注维度最多为$n$的模块类。我们还描述了注入模块的精确复数的左正交类,以及具有有限戈伦斯坦投影维度、戈伦斯坦平面维度和 PGF 维度的模块类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intersection of complete cotorsion pairs
Given two (hereditary) complete cotorsion pairs $(\mathcal{X}_1,\mathcal{Y}_1)$ and $(\mathcal{X}_2,\mathcal{Y}_2)$ in an exact category with $\mathcal{X}_1\subseteq \mathcal{Y}_2$, we prove that $\left({\rm Smd}\langle \mathcal{X}_1,\mathcal{X}_2 \rangle,\mathcal{Y}_1\cap \mathcal{Y}_2\right)$ is also a (hereditary) complete cotorsion pair, where ${\rm Smd}\langle \mathcal{X}_1,\mathcal{X}_2 \rangle$ is the class of direct summands of extension of $\mathcal{X}_1$ and $\mathcal{X}_2$. As an application, we construct complete cotorsion pairs, such as $(^\perp\mathcal{GI}^{\leqslant n},\mathcal{GI}^{\leqslant n})$, where $\mathcal{GI}^{\leqslant n}$ is the class of modules of Gorenstein injective dimension at most $n$. And we also characterize the left orthogonal class of exact complexes of injective modules and the classes of modules with finite Gorenstein projective, Gorenstein flat, and PGF dimensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信