{"title":"微定位的相对 Calabi-Yau 结构","authors":"Christopher Kuo, Wenyuan Li","doi":"arxiv-2408.04085","DOIUrl":null,"url":null,"abstract":"For an oriented manifold $M$ and a compact subanalytic Legendrian $\\Lambda\n\\subseteq S^*M$, we construct a canonical strong smooth relative Calabi--Yau\nstructure on the microlocalization at infinity and its left adjoint\n$m_\\Lambda^l: \\operatorname{\\mu sh}_\\Lambda(\\Lambda) \\rightleftharpoons\n\\operatorname{Sh}_\\Lambda(M)_0 : m_\\Lambda$ between compactly supported sheaves\non $M$ with singular support on $\\Lambda$ and microsheaves on $\\Lambda$. We\nalso construct a canonical strong Calabi-Yau structure on microsheaves\n$\\operatorname{\\mu sh}_\\Lambda(\\Lambda)$. Our approach does not require local\nproperness and hence does not depend on arborealization. We thus obtain a\ncanonical smooth relative Calabi-Yau structure on the Orlov functor for wrapped\nFukaya categories of cotangent bundles with Weinstein stops, such that the\nwrap-once functor is the inverse dualizing bimodule.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relative Calabi-Yau structure on microlocalization\",\"authors\":\"Christopher Kuo, Wenyuan Li\",\"doi\":\"arxiv-2408.04085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an oriented manifold $M$ and a compact subanalytic Legendrian $\\\\Lambda\\n\\\\subseteq S^*M$, we construct a canonical strong smooth relative Calabi--Yau\\nstructure on the microlocalization at infinity and its left adjoint\\n$m_\\\\Lambda^l: \\\\operatorname{\\\\mu sh}_\\\\Lambda(\\\\Lambda) \\\\rightleftharpoons\\n\\\\operatorname{Sh}_\\\\Lambda(M)_0 : m_\\\\Lambda$ between compactly supported sheaves\\non $M$ with singular support on $\\\\Lambda$ and microsheaves on $\\\\Lambda$. We\\nalso construct a canonical strong Calabi-Yau structure on microsheaves\\n$\\\\operatorname{\\\\mu sh}_\\\\Lambda(\\\\Lambda)$. Our approach does not require local\\nproperness and hence does not depend on arborealization. We thus obtain a\\ncanonical smooth relative Calabi-Yau structure on the Orlov functor for wrapped\\nFukaya categories of cotangent bundles with Weinstein stops, such that the\\nwrap-once functor is the inverse dualizing bimodule.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Relative Calabi-Yau structure on microlocalization
For an oriented manifold $M$ and a compact subanalytic Legendrian $\Lambda
\subseteq S^*M$, we construct a canonical strong smooth relative Calabi--Yau
structure on the microlocalization at infinity and its left adjoint
$m_\Lambda^l: \operatorname{\mu sh}_\Lambda(\Lambda) \rightleftharpoons
\operatorname{Sh}_\Lambda(M)_0 : m_\Lambda$ between compactly supported sheaves
on $M$ with singular support on $\Lambda$ and microsheaves on $\Lambda$. We
also construct a canonical strong Calabi-Yau structure on microsheaves
$\operatorname{\mu sh}_\Lambda(\Lambda)$. Our approach does not require local
properness and hence does not depend on arborealization. We thus obtain a
canonical smooth relative Calabi-Yau structure on the Orlov functor for wrapped
Fukaya categories of cotangent bundles with Weinstein stops, such that the
wrap-once functor is the inverse dualizing bimodule.