{"title":"带吸收因式分解的乘法网格","authors":"Andreas Reinhart, Gulsen Ulucak","doi":"arxiv-2408.01100","DOIUrl":null,"url":null,"abstract":"In [22], Yassine et al. introduced the notion of 1-absorbing prime ideals in\ncommutative rings with nonzero identity. In this article, we examine the\nconcept of 1-absorbing prime elements in C-lattices. We investigate the\nC-lattices in which every element is a finite product of 1-absorbing prime\nelements (we denote them as OAFLs for short). Moreover, we study C-lattices\nhaving 2-absorbing factorization (we denote them as TAFLs for short).","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplicative Lattices with Absorbing Factorization\",\"authors\":\"Andreas Reinhart, Gulsen Ulucak\",\"doi\":\"arxiv-2408.01100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In [22], Yassine et al. introduced the notion of 1-absorbing prime ideals in\\ncommutative rings with nonzero identity. In this article, we examine the\\nconcept of 1-absorbing prime elements in C-lattices. We investigate the\\nC-lattices in which every element is a finite product of 1-absorbing prime\\nelements (we denote them as OAFLs for short). Moreover, we study C-lattices\\nhaving 2-absorbing factorization (we denote them as TAFLs for short).\",\"PeriodicalId\":501475,\"journal\":{\"name\":\"arXiv - MATH - Commutative Algebra\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Commutative Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.01100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在[22]中,Yassine 等人引入了具有非零标识的互素环中的 1 吸素ideals 概念。本文将研究 C 格中 1-absorbing 素元的概念。我们研究了其中每个元素都是 1-absorbing primeelements 的有限乘积的 C 格(我们简称它们为 OAFLs)。此外,我们还研究了具有 2 吸素因式分解的 C 网格(简称 TAFL)。
Multiplicative Lattices with Absorbing Factorization
In [22], Yassine et al. introduced the notion of 1-absorbing prime ideals in
commutative rings with nonzero identity. In this article, we examine the
concept of 1-absorbing prime elements in C-lattices. We investigate the
C-lattices in which every element is a finite product of 1-absorbing prime
elements (we denote them as OAFLs for short). Moreover, we study C-lattices
having 2-absorbing factorization (we denote them as TAFLs for short).