利用机器学习区分 Calabi-Yau 拓扑学

Yang-Hui He, Zhi-Gang Yao, Shing-Tung Yau
{"title":"利用机器学习区分 Calabi-Yau 拓扑学","authors":"Yang-Hui He, Zhi-Gang Yao, Shing-Tung Yau","doi":"arxiv-2408.05076","DOIUrl":null,"url":null,"abstract":"While the earliest applications of AI methodologies to pure mathematics and\ntheoretical physics began with the study of Hodge numbers of Calabi-Yau\nmanifolds, the topology type of such manifold also crucially depend on their\nintersection theory. Continuing the paradigm of machine learning algebraic\ngeometry, we here investigate the triple intersection numbers, focusing on\ncertain divisibility invariants constructed therefrom, using the Inception\nconvolutional neural network. We find $\\sim90\\%$ accuracies in prediction in a\nstandard fivefold cross-validation, signifying that more sophisticated tasks of\nidentification of manifold topologies can also be performed by machine\nlearning.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distinguishing Calabi-Yau Topology using Machine Learning\",\"authors\":\"Yang-Hui He, Zhi-Gang Yao, Shing-Tung Yau\",\"doi\":\"arxiv-2408.05076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While the earliest applications of AI methodologies to pure mathematics and\\ntheoretical physics began with the study of Hodge numbers of Calabi-Yau\\nmanifolds, the topology type of such manifold also crucially depend on their\\nintersection theory. Continuing the paradigm of machine learning algebraic\\ngeometry, we here investigate the triple intersection numbers, focusing on\\ncertain divisibility invariants constructed therefrom, using the Inception\\nconvolutional neural network. We find $\\\\sim90\\\\%$ accuracies in prediction in a\\nstandard fivefold cross-validation, signifying that more sophisticated tasks of\\nidentification of manifold topologies can also be performed by machine\\nlearning.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.05076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工智能方法论在纯数学和理论物理学中的最早应用始于对 Calabi-Yaumanifolds 霍奇数的研究,而此类流形的拓扑类型在很大程度上也取决于它们的交点理论。延续机器学习代数几何的范式,我们在此利用 Inception Convolutional 神经网络研究三重交点数,重点研究由此构建的某些可分性不变量。我们发现,在标准的五倍交叉验证中,预测的准确率为 $\sim90\%$ ,这表明机器学习也可以完成流形拓扑识别的更复杂任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distinguishing Calabi-Yau Topology using Machine Learning
While the earliest applications of AI methodologies to pure mathematics and theoretical physics began with the study of Hodge numbers of Calabi-Yau manifolds, the topology type of such manifold also crucially depend on their intersection theory. Continuing the paradigm of machine learning algebraic geometry, we here investigate the triple intersection numbers, focusing on certain divisibility invariants constructed therefrom, using the Inception convolutional neural network. We find $\sim90\%$ accuracies in prediction in a standard fivefold cross-validation, signifying that more sophisticated tasks of identification of manifold topologies can also be performed by machine learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信