Yang Bai;Meijing Gao;Shiyu Li;Ping Wang;Ning Guan;Haozheng Yin;Yonghao Yan
{"title":"IBFusion:基于红外目标掩码和双模特征提取策略的红外与可见光图像融合方法","authors":"Yang Bai;Meijing Gao;Shiyu Li;Ping Wang;Ning Guan;Haozheng Yin;Yonghao Yan","doi":"10.1109/TMM.2024.3410113","DOIUrl":null,"url":null,"abstract":"The fusion of infrared (IR) and visible (VIS) images aims to capture complementary information from diverse sensors, resulting in a fused image that enhances the overall human perception of the scene. However, existing fusion methods face challenges preserving diverse feature information, leading to cross-modal interference, feature degradation, and detail loss in the fused image. To solve the above problems, this paper proposes an image fusion method based on the infrared target mask and bimodal feature extraction strategy, termed IBFusion. Firstly, we define an infrared target mask, employing it to retain crucial information from the source images in the fused result. Additionally, we devise a mixed loss function, encompassing content loss, gradient loss, and structure loss, to ensure the coherence of the fused image with the IR and VIS images. Then, the mask is introduced into the mixed loss function to guide feature extraction and unsupervised network optimization. Secondly, we create a bimodal feature extraction strategy and construct a Dual-channel Multi-scale Feature Extraction Module (DMFEM) to extract thermal target information from the IR image and background texture information from the VIS image. This module retains the complementary information of the two source images. Finally, we use the Feature Fusion Module (FFM) to fuse the features effectively, generating the fusion result. Experiments on three public datasets demonstrate that the fusion results of our method have prominent infrared targets and clear texture details. Both subjective and objective assessments are better than the other twelve advanced algorithms, proving our method's effectiveness.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"26 ","pages":"10610-10622"},"PeriodicalIF":8.4000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IBFusion: An Infrared and Visible Image Fusion Method Based on Infrared Target Mask and Bimodal Feature Extraction Strategy\",\"authors\":\"Yang Bai;Meijing Gao;Shiyu Li;Ping Wang;Ning Guan;Haozheng Yin;Yonghao Yan\",\"doi\":\"10.1109/TMM.2024.3410113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fusion of infrared (IR) and visible (VIS) images aims to capture complementary information from diverse sensors, resulting in a fused image that enhances the overall human perception of the scene. However, existing fusion methods face challenges preserving diverse feature information, leading to cross-modal interference, feature degradation, and detail loss in the fused image. To solve the above problems, this paper proposes an image fusion method based on the infrared target mask and bimodal feature extraction strategy, termed IBFusion. Firstly, we define an infrared target mask, employing it to retain crucial information from the source images in the fused result. Additionally, we devise a mixed loss function, encompassing content loss, gradient loss, and structure loss, to ensure the coherence of the fused image with the IR and VIS images. Then, the mask is introduced into the mixed loss function to guide feature extraction and unsupervised network optimization. Secondly, we create a bimodal feature extraction strategy and construct a Dual-channel Multi-scale Feature Extraction Module (DMFEM) to extract thermal target information from the IR image and background texture information from the VIS image. This module retains the complementary information of the two source images. Finally, we use the Feature Fusion Module (FFM) to fuse the features effectively, generating the fusion result. Experiments on three public datasets demonstrate that the fusion results of our method have prominent infrared targets and clear texture details. Both subjective and objective assessments are better than the other twelve advanced algorithms, proving our method's effectiveness.\",\"PeriodicalId\":13273,\"journal\":{\"name\":\"IEEE Transactions on Multimedia\",\"volume\":\"26 \",\"pages\":\"10610-10622\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Multimedia\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10550147/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10550147/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
IBFusion: An Infrared and Visible Image Fusion Method Based on Infrared Target Mask and Bimodal Feature Extraction Strategy
The fusion of infrared (IR) and visible (VIS) images aims to capture complementary information from diverse sensors, resulting in a fused image that enhances the overall human perception of the scene. However, existing fusion methods face challenges preserving diverse feature information, leading to cross-modal interference, feature degradation, and detail loss in the fused image. To solve the above problems, this paper proposes an image fusion method based on the infrared target mask and bimodal feature extraction strategy, termed IBFusion. Firstly, we define an infrared target mask, employing it to retain crucial information from the source images in the fused result. Additionally, we devise a mixed loss function, encompassing content loss, gradient loss, and structure loss, to ensure the coherence of the fused image with the IR and VIS images. Then, the mask is introduced into the mixed loss function to guide feature extraction and unsupervised network optimization. Secondly, we create a bimodal feature extraction strategy and construct a Dual-channel Multi-scale Feature Extraction Module (DMFEM) to extract thermal target information from the IR image and background texture information from the VIS image. This module retains the complementary information of the two source images. Finally, we use the Feature Fusion Module (FFM) to fuse the features effectively, generating the fusion result. Experiments on three public datasets demonstrate that the fusion results of our method have prominent infrared targets and clear texture details. Both subjective and objective assessments are better than the other twelve advanced algorithms, proving our method's effectiveness.
期刊介绍:
The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.