{"title":"利用基于 SAM 的结构先验和引导进行低照度图像增强","authors":"Guanlin Li;Bin Zhao;Xuelong Li","doi":"10.1109/TMM.2024.3414328","DOIUrl":null,"url":null,"abstract":"Low-light images often suffer from severe detail lost in darker areas and non-uniform illumination distribution across distinct regions. Thus, structure modeling and region-specific illumination manipulation are crucial for high-quality enhanced image generation. However, previous methods encounter limitations in exploring robust structure priors and lack adequate modeling of illumination relationships among different regions, resulting in structure artifacts and color deviations. To alleviate this limitation, we propose a Segmentation-Guided Framework (SGF) which integrates the constructed robust segmentation priors to guide the enhancement process. Specifically, SGF first constructs a robust image-level edge prior based on the segmentation results of the Segment Anything Model (SAM) in a zero-shot manner. Then, we generate lighted-up region-aware feature-level prior by incorporating region-aware dynamic convolution. To adequately model long-distance illumination interactions across distinct regions, we design a segmentation-guided transformer block (SGTB), which utilizes the lighted-up region-aware feature-level prior to guide self-attention calculation. By arranging the SGTBs in a symmetric hierarchical structure, we derive a segmentation-guided enhancement module that operates under the guidance of both the image and feature-level priors. Comprehensive experimental results show that our SGF performs remarkably in both quantitative evaluation and visual comparison.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"26 ","pages":"10854-10866"},"PeriodicalIF":8.4000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Light Image Enhancement With SAM-Based Structure Priors and Guidance\",\"authors\":\"Guanlin Li;Bin Zhao;Xuelong Li\",\"doi\":\"10.1109/TMM.2024.3414328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low-light images often suffer from severe detail lost in darker areas and non-uniform illumination distribution across distinct regions. Thus, structure modeling and region-specific illumination manipulation are crucial for high-quality enhanced image generation. However, previous methods encounter limitations in exploring robust structure priors and lack adequate modeling of illumination relationships among different regions, resulting in structure artifacts and color deviations. To alleviate this limitation, we propose a Segmentation-Guided Framework (SGF) which integrates the constructed robust segmentation priors to guide the enhancement process. Specifically, SGF first constructs a robust image-level edge prior based on the segmentation results of the Segment Anything Model (SAM) in a zero-shot manner. Then, we generate lighted-up region-aware feature-level prior by incorporating region-aware dynamic convolution. To adequately model long-distance illumination interactions across distinct regions, we design a segmentation-guided transformer block (SGTB), which utilizes the lighted-up region-aware feature-level prior to guide self-attention calculation. By arranging the SGTBs in a symmetric hierarchical structure, we derive a segmentation-guided enhancement module that operates under the guidance of both the image and feature-level priors. Comprehensive experimental results show that our SGF performs remarkably in both quantitative evaluation and visual comparison.\",\"PeriodicalId\":13273,\"journal\":{\"name\":\"IEEE Transactions on Multimedia\",\"volume\":\"26 \",\"pages\":\"10854-10866\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Multimedia\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10557144/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10557144/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Low-Light Image Enhancement With SAM-Based Structure Priors and Guidance
Low-light images often suffer from severe detail lost in darker areas and non-uniform illumination distribution across distinct regions. Thus, structure modeling and region-specific illumination manipulation are crucial for high-quality enhanced image generation. However, previous methods encounter limitations in exploring robust structure priors and lack adequate modeling of illumination relationships among different regions, resulting in structure artifacts and color deviations. To alleviate this limitation, we propose a Segmentation-Guided Framework (SGF) which integrates the constructed robust segmentation priors to guide the enhancement process. Specifically, SGF first constructs a robust image-level edge prior based on the segmentation results of the Segment Anything Model (SAM) in a zero-shot manner. Then, we generate lighted-up region-aware feature-level prior by incorporating region-aware dynamic convolution. To adequately model long-distance illumination interactions across distinct regions, we design a segmentation-guided transformer block (SGTB), which utilizes the lighted-up region-aware feature-level prior to guide self-attention calculation. By arranging the SGTBs in a symmetric hierarchical structure, we derive a segmentation-guided enhancement module that operates under the guidance of both the image and feature-level priors. Comprehensive experimental results show that our SGF performs remarkably in both quantitative evaluation and visual comparison.
期刊介绍:
The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.