调整 Q 学习算法学习率的几何纳什方法

Kwadwo Osei Bonsu
{"title":"调整 Q 学习算法学习率的几何纳什方法","authors":"Kwadwo Osei Bonsu","doi":"arxiv-2408.04911","DOIUrl":null,"url":null,"abstract":"This paper proposes a geometric approach for estimating the $\\alpha$ value in\nQ learning. We establish a systematic framework that optimizes the {\\alpha}\nparameter, thereby enhancing learning efficiency and stability. Our results\nshow that there is a relationship between the learning rate and the angle\nbetween a vector T (total time steps in each episode of learning) and R (the\nreward vector for each episode). The concept of angular bisector between\nvectors T and R and Nash Equilibrium provide insight into estimating $\\alpha$\nsuch that the algorithm minimizes losses arising from exploration-exploitation\ntrade-off.","PeriodicalId":501188,"journal":{"name":"arXiv - ECON - Theoretical Economics","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Geometric Nash Approach in Tuning the Learning Rate in Q-Learning Algorithm\",\"authors\":\"Kwadwo Osei Bonsu\",\"doi\":\"arxiv-2408.04911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a geometric approach for estimating the $\\\\alpha$ value in\\nQ learning. We establish a systematic framework that optimizes the {\\\\alpha}\\nparameter, thereby enhancing learning efficiency and stability. Our results\\nshow that there is a relationship between the learning rate and the angle\\nbetween a vector T (total time steps in each episode of learning) and R (the\\nreward vector for each episode). The concept of angular bisector between\\nvectors T and R and Nash Equilibrium provide insight into estimating $\\\\alpha$\\nsuch that the algorithm minimizes losses arising from exploration-exploitation\\ntrade-off.\",\"PeriodicalId\":501188,\"journal\":{\"name\":\"arXiv - ECON - Theoretical Economics\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - ECON - Theoretical Economics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Theoretical Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种在 Q 学习中估计 $\alpha$ 值的几何方法。我们建立了一个系统框架来优化{\alpha}参数,从而提高学习效率和稳定性。我们的研究结果表明,学习率与向量 T(每集学习的总时间步数)和 R(每集的前进向量)之间的夹角有一定的关系。向量 T 和 R 之间的角平分线概念以及纳什均衡为估计 $\alpha$ 提供了启示,从而使算法最大限度地减少探索-开发-权衡所造成的损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Geometric Nash Approach in Tuning the Learning Rate in Q-Learning Algorithm
This paper proposes a geometric approach for estimating the $\alpha$ value in Q learning. We establish a systematic framework that optimizes the {\alpha} parameter, thereby enhancing learning efficiency and stability. Our results show that there is a relationship between the learning rate and the angle between a vector T (total time steps in each episode of learning) and R (the reward vector for each episode). The concept of angular bisector between vectors T and R and Nash Equilibrium provide insight into estimating $\alpha$ such that the algorithm minimizes losses arising from exploration-exploitation trade-off.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信