表面令牌跳跃的简单二次核

Daniel W. Cranston, Moritz Mühlenthaler, Benjamin Peyrille
{"title":"表面令牌跳跃的简单二次核","authors":"Daniel W. Cranston, Moritz Mühlenthaler, Benjamin Peyrille","doi":"arxiv-2408.04743","DOIUrl":null,"url":null,"abstract":"The problem \\textsc{Token Jumping} asks whether, given a graph $G$ and two\nindependent sets of \\emph{tokens} $I$ and $J$ of $G$, we can transform $I$ into\n$J$ by changing the position of a single token in each step and having an\nindependent set of tokens throughout. We show that there is a polynomial-time\nalgorithm that, given an instance of \\textsc{Token Jumping}, computes an\nequivalent instance of size $O(g^2 + gk + k^2)$, where $g$ is the genus of the\ninput graph and $k$ is the size of the independent sets.","PeriodicalId":501216,"journal":{"name":"arXiv - CS - Discrete Mathematics","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A simple quadratic kernel for Token Jumping on surfaces\",\"authors\":\"Daniel W. Cranston, Moritz Mühlenthaler, Benjamin Peyrille\",\"doi\":\"arxiv-2408.04743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem \\\\textsc{Token Jumping} asks whether, given a graph $G$ and two\\nindependent sets of \\\\emph{tokens} $I$ and $J$ of $G$, we can transform $I$ into\\n$J$ by changing the position of a single token in each step and having an\\nindependent set of tokens throughout. We show that there is a polynomial-time\\nalgorithm that, given an instance of \\\\textsc{Token Jumping}, computes an\\nequivalent instance of size $O(g^2 + gk + k^2)$, where $g$ is the genus of the\\ninput graph and $k$ is the size of the independent sets.\",\"PeriodicalId\":501216,\"journal\":{\"name\":\"arXiv - CS - Discrete Mathematics\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04743\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

令牌跳转问题(\textsc{Token Jumping})问的是,如果给定一个图 $G$,以及 $G$ 的两个独立的令牌集 $I$ 和 $J$,我们是否可以通过在每一步中改变一个令牌的位置,并在整个过程中拥有一个独立的令牌集,从而将 $I$ 转换成 $J$。我们证明,有一种多项式时间算法可以在给定一个 \textsc{Token Jumping} 实例的情况下,计算出一个大小为 $O(g^2+gk+k^2)$的等价实例,其中 $g$ 是输入图的属,$k$ 是独立集的大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A simple quadratic kernel for Token Jumping on surfaces
The problem \textsc{Token Jumping} asks whether, given a graph $G$ and two independent sets of \emph{tokens} $I$ and $J$ of $G$, we can transform $I$ into $J$ by changing the position of a single token in each step and having an independent set of tokens throughout. We show that there is a polynomial-time algorithm that, given an instance of \textsc{Token Jumping}, computes an equivalent instance of size $O(g^2 + gk + k^2)$, where $g$ is the genus of the input graph and $k$ is the size of the independent sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信